68 research outputs found
The electronic structure of Amorphous Carbon Nanodots
We
have studied hydrogen-passivated amorphous carbon nanostructures
with semiempirical molecular orbital theory in order to provide an
understanding of the factors that affect their electronic properties.
Amorphous structures were first constructed using periodic calculations
in a melt/quench protocol. Pure periodic amorphous carbon structures
and their counterparts doped with nitrogen and/or oxygen feature large
electronic band gaps. Surprisingly, descriptors such as the elemental
composition and the number of sp<sup>3</sup>-atoms only influence
the electronic structure weakly. Instead, the exact topology of the
sp<sup>2</sup>-network in terms of effective conjugation defines the
band gap. Amorphous carbon nanodots of different structures and sizes
were cut out of the periodic structures. Our calculations predict
the occurrence of localized electronic surface states, which give
rise to interesting effects such as amphoteric reactivity and predicted
optical band gaps in the near-UV/visible range. Optical and electronic
gaps display a dependence on particle size similar to that of inorganic
colloidal quantum dots
Single-Reference Coupled Cluster Theory for Multi-Reference Problems
Coupled cluster (CC) theory is widely accepted as the most accurate and generally applicable approach in quantum chemistry. CC calculations are usually performed with single Slater-determinant references, e.g., canonical Hartree-Fock (HF) wavefunctions, though any single determinant can be used. This is an attractive feature because typical CC calculations are straightforward to apply, as there is no potentially ambiguous user input required. On the other hand, there can be concern that CC approximations give unreliable results when the reference determinant provides a poor description of the system of interest, i.e., when the HF or any other single determinant ground state has a relatively low weight in the full CI expansion. However, in many cases, the reported âfailuresâ of CC can be attributed to an unfortunate choice of reference determinant, rather than intrinsic shortcomings of CC itself. This is connected to well-known effects like spin-contamination, wavefunction instability, and symmetry-breaking. In this contribution, a particularly difficult singlet/triplet splitting problem in two phenyldinitrene molecules is investigated, where CC with singles, doubles and perturbative triples [CCSD(T)] was reported to give poor results. This is analyzed by using different reference determinants for CCSD(T), as well as performing higher level CCSDT-3 and CCSDT calculations. We show that doubly electron attached and doubly ionized equation-of-motion (DEA/DIP-EOM) approaches are powerful alternatives for treating such systems. These are operationally single-determinant methods that adequately take the multi-reference nature of these molecules into account. Our results indicate that CC remains a powerful tool for describing systems with both static correlation and dynamic correlation, when pitfalls associated with the choice of the reference determinant are avoided
EMPIRE: a highly parallel semiempirical molecular orbital program: 3: Born-Oppenheimer molecular dynamics
Abstract
Direct NDDO-based Born-Oppenheimer molecular dynamics (MD) have been implemented in the semiempirical molecular orbital program EMPIRE. Fully quantum mechanical MD simulations on unprecedented time and length scales are possible, since the calculation of self-consistent wavefunctions and gradients is performed in a massively parallel manner. MD simulations can be performed in the NVE and NVT ensembles, using either deterministic (Berendsen) or stochastic (Langevin) thermostats. Furthermore, dynamics for condensed-phase systems can be performed under periodic boundary conditions. We show three exemplary applications: the dynamics of molecular reorganization upon ionization, long timescale dynamics of an endohedral fullerene, and calculation of the vibrational spectrum of a nanoparticle consisting of more than eight hundred atoms
Carbon Nanodots for Charge-Transfer Processes
In recent years, carbon nanodots (CNDs) have emerged as an environmentally friendly, biocompatible, and inexpensive class of material, whose features sparked interest for a wide range of applications. Most notable is their photoactivity, as exemplified by their strong luminescence. Consequently, CNDs are currently being investigated as active components in photocatalysis, sensing, and optoelectronics. Chargetransfer interactions are common to all these areas. It is therefore essential to be able to fine-tune both the electronic structure of CNDs and the electronic communication in CND-based functional materials. The complex, but not completely deciphered, structure of CNDs necessitates, however, a multifaceted strategy to investigate their fundamental electronic structure and to establish structureâproperty relationships. Such investigations require a combination of spectroscopic methods, such as ultrafast transient absorption and fluorescence up-conversion techniques, electrochemistry, and modeling of CNDs, both in the absence and presence of other photoactive materials. Only a sound understanding of the dynamics of charge transfer, charge shift, charge transport, etc., with and without light makes much-needed improvements in, for example, photocatalytic processes, in which CNDs are used as either photosensitizers or catalytic centers, possible. This Account addresses the structural, photophysical, and electrochemical properties of CNDs, in general, and the chargetransfer chemistry of CNDs, in particular. Pressure-synthesized CNDs (pCNDs), for which citric acid and urea are used as inexpensive and biobased precursor materials, lie at the center of attention. A simple microwave-assisted thermolytic reaction, performed in sealed vessels, yields pCNDs with a fairly homogeneous size distribution of âŒ1â2 nm. The narrow and excitationindependent photoluminescence of pCNDs contrasts with that seen in CNDs synthesized by other techniques, making pCNDs optimal for in-depth physicochemical analyses. The atomistic and electronic structures of CNDs were also analyzed by quantum chemical modeling approaches that led to a range of possible structures, ranging from heavily functionalized, graphene-like structures to disordered amorphous particles containing small sp2 domains. Both the electron-accepting and -donating performances of CNDs make the charge-transfer chemistry of CNDs rather versatile. Both covalent and noncovalent synthetic approaches have been explored, resulting in architectures of various sizes. CNDs, for example, have been combined with molecular materials ranging from electron-donating porphyrins and extended tetrathiafulvalenes to electron-accepting perylendiimides, or nanocarbon materials such as polymer-wrapped single-walled carbon nanotubes. In every case, charge-separated states formed as part of the reaction cascades initiated by photoexcitation. Charge-transfer assemblies including CNDs have also played a role in technological applications: for example, a proof-ofconcept dye-sensitized solar cell was designed and tested, in which CNDs were adsorbed on the surface of mesoporous anatase TiO2. The wide range of reported electron-donorâacceptor systems documents the versatility of CNDs as molecular building blocks, whose electronic properties are tunable for the needs of emerging technologies.Fil: Cadranel, Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de QuĂmica InorgĂĄnica, AnalĂtica y QuĂmica FĂsica; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de QuĂmica, FĂsica de los Materiales, Medioambiente y EnergĂa; ArgentinaFil: Margraf, Johannes T.. Technische Universitat MĂŒnchen; AlemaniaFil: Strauss, Volker. No especifĂca;Fil: Clark, Timothy. Universitat Erlangen-Nuremberg; AlemaniaFil: Guldi, Dirk M.. Universitat Erlangen-Nuremberg; Alemani
Integrating metalloporphycenes into p-type NiO-based dye-sensitized solar cells
In the current work, we have explored a novel synthetic route towards metalated porphycenes and their use in p-type NiO-based dye-sensitized solar cells. Particular emphasis is placed on the influence that the relative positioning of the anchoring group exerts on the DSSC performance
Carbon Nanodot:Supramolecular electron donor-acceptor hybrids featuring Perylenediimides
We describe the formation of charge-transfer complexes that feature electron-donating carbon nanodots (CND) and electron-accepting perylenediimides (PDI). The functionalities of PDIs have been selected to complement those of CNDs in terms of electrostatic and \u3c0-stacking interactions based on oppositely charged ionic head groups and extended \u3c0-systems, respectively. Importantly, the contributions from electrostatic interactions were confirmed in reference experiments, in which stronger interactions were found for PDIs that feature positively rather than negatively charged head groups. The electronic interactions between the components in the ground and excited state were characterized in complementary absorption and fluorescence titration assays that suggest charge-transfer interactions in both states with binding constants on the order of 8
7104\u2009M 121 (25\u2005L\u2009g 121). Selective excitation of the two components in ultrafast pump probe experiments gave a 210\u2005ps lived charge-separated state
On-off switch of charge-separated states of pyridine-vinylene-linked porphyrin-C60 conjugates detected by EPR
The design, synthesis, and electronic properties of a new series of DâÏâA conjugates consisting of free base (H2P) and zinc porphyrins (ZnP) as electron donors and a fullerene (C60) as electron acceptor, in which the two electroactive entities are covalently linked through pyridine-vinylene spacers of different lengths, are described. Electronic interactions in the ground state were characterized by electrochemical and absorption measurements, which were further supported with theoretical calculations. Most importantly, charge-transfer bands were observed in the absorption spectra, indicating a strong pushâpull behavior. In the excited states, electronic interactions were detected by selective photoexcitation under steady-state conditions, by time-resolved fluorescence investigations, and by pump probe experiments on the femto-, pico-, and nanosecond time scales. Porphyrin fluorescence is quenched for the different DâÏâA conjugates, from which we conclude that the deactivation mechanisms of the excited singlet states are based on photoinduced energy- and/or electron transfer processes between H2P/ZnP and C60, mediated through the molecular spacers. The fluorescence intensity decreases and the fluorescence lifetimes shorten as the spacer length decreases and as the spacer substitution changes. With the help of transient absorption spectroscopy, the formation of charge-separated states involving oxidized H2P/ZnP and reduced C60 was confirmed. Lifetimes of the corresponding charge-separated states, which ranged from âŒ400 picoseconds to 165 nanoseconds, depend on the spacer length, the spacer substitution, and the solvent polarity. Interestingly, DâÏâA conjugates containing the longest linkers did not necessarily exhibit the longest charge-separated state lifetimes. The distances between the electron donors and the acceptors were calculated by molecular modelling. The longest charge-separated state lifetime corresponded to the DâÏâA conjugate with the longest electron donorâacceptor distance. Likewise, EPR measurements in frozen media revealed charge separated states in all the DâÏâA conjugates investigated. A sharp peak with g values âŒ2.000 was assigned to reduced C60, while a broader, less intense signal (g ⌠2.003) was assigned to oxidized H2P/ZnP. Onâoff switching of the formation and decay of the charge-separated states was detected by EPR at 77 K by repeatedly turning the irradiation source on and off
- âŠ