28 research outputs found

    BMBF-Fördernummer: MTK0385

    Get PDF

    Looking beyond stratification: a model-based analysis of the biological drivers of oxygen deficiency in the North Sea

    Get PDF
    Low oxygen conditions, often referred to as oxy- gen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, low- est oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratifi- cation is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM- ECOHAM to provide a general characterisation of the dif- ferent zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub- thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly produc- tive, non-stratified coastal zone, (2) a productive, season- ally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub- thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification pe- riods (textgreater60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub- thermocline volume implying both a small initial oxygen in- ventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial dif- ferences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen de- ficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which pro- tects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly suscep- tible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50% of the overall consumption. Thus, primary production followed by rem- ineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen defi- ciency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the es- timation of the impact of anthropogenic drivers on the North Sea oxygen conditions

    The impact of intertidal areas on the carbonate system of the southern North Sea

    Get PDF
    The coastal ocean is strongly affected by ocean acidification because of its shallow water depths, low volume, and the closeness to terrestrial dynamics. Earlier observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the southern part of the North Sea, a northwest European shelf sea, revealed lower acidification effects than expected. It has been assumed that anaerobic degradation and subsequent TA release in the adjacent back-barrier tidal areas (Wadden Sea) in summertime is responsible for this phenomenon. In this study the exchange rates of TA and DIC between the Wadden Sea tidal basins and the North Sea and the consequences for the carbonate system in the German Bight are estimated using a 3D ecosystem model. The aim of this study is to differentiate the various sources contributing to observed high summer TA in the southern North Sea. Measured TA and DIC in the Wadden Sea are considered as model boundary conditions. This procedure acknowledges the dynamic behaviour of the Wadden Sea as an area of effective production and decomposition of organic material. According to the modelling results, 39 Gmol TA yr−1 were exported from the Wadden Sea into the North Sea, which is less than a previous estimate but within a comparable range. The interannual variabilities in TA and DIC, mainly driven by hydrodynamic conditions, were examined for the years 2001–2009. Dynamics in the carbonate system are found to be related to specific weather conditions. The results suggest that the Wadden Sea is an important driver for the carbonate system in the southern North Sea. On average 41 % of TA inventory changes in the German Bight were caused by riverine input, 37 % by net transport from adjacent North Sea sectors, 16 % by Wadden Sea export, and 6 % were caused by internal net production of TA. The dominant role of river input for the TA inventory disappears when focusing on TA concentration changes due to the corresponding freshwater fluxes diluting the marine TA concentrations. The ratio of exported TA versus DIC reflects the dominant underlying biogeochemical processes in the Wadden Sea. Whereas aerobic degradation of organic matter played a key role in the North Frisian Wadden Sea during all seasons of the year, anaerobic degradation of organic matter dominated in the East Frisian Wadden Sea. Despite the scarcity of high-resolution field data, it is shown that anaerobic degradation in the Wadden Sea is one of the main contributors of elevated summer TA values in the southern North Sea

    Metabolic alkalinity release from large port facilities (Hamburg, Germany) and impact on coastal carbon storage

    Get PDF
    Metabolic activities in estuaries, especially these of large rivers, profoundly affect the downstream coastal biogeochemistry. Here, we unravel the impacts of large industrial port facilities, showing that elevated metabolic activity in the Hamburg port (Germany) increases total alkalinity (TA) and dissolved inorganic carbon (DIC) runoff to the North Sea. The imports of particulate inorganic carbon, particulate organic carbon, and particulate organic nitrogen (PIC, POC, and PON) from the upstream Elbe River can fuel up to 90 % of the TA generated in the entire estuary via calcium carbonate (CaCO3) dissolution. The remaining at least 10 % of TA generation can be attributed to anaerobic metabolic processes such as denitrification of remineralized PON or other pathways. The Elbe Estuary as a whole adds approximately 15 % to the overall DIC and TA runoff. Both the magnitude and partitioning among these processes appear to be sensitive to climatic and anthropogenic changes. Thus, with increased TA loads, the coastal ocean (in particular) would act as a stronger CO2 sink, resulting in changes to the overall coastal system's capacity to store CO2.</p

    A novel modeling approach to quantify the influence of nitrogen inputs on the oxygen dynamics of the North Sea

    Get PDF
    Oxygen (O2) deficiency, i.e., dissolved O2 concentrations below 6 mg O2 L-1, is a common feature in the southern North Sea. Its evolution is governed mainly by the presence of seasonal stratification and production of organic matter, which is subsequently degraded under O2 consumption. The latter is strongly influenced by riverine nutrient loads, i.e., nitrogen (N) and phosphorus (P). As riverine P loads have been reduced significantly over the past decades, this study aims for the quantification of the influence of riverine and non-riverine N inputs on the O2 dynamics in the southern North Sea. For this purpose, we present an approach to expand a nutrient-tagging technique for physical-biogeochemical models - often referred to as 'trans-boundary nutrient transports' (TBNT) - by introducing a direct link to the O2 dynamics. We apply the expanded TBNT to the physical-biogeochemical model system HAMSOM-ECOHAM and focus our analysis on N-related O2 consumption in the southern North Sea during 2000-2014. The analysis reveals that near-bottom O2 consumption in the southern North Sea is strongly influenced by the N supply from the North Atlantic across the northern shelf edge. However, riverine N sources - especially the Dutch, German and British rivers - as well as the atmosphere also play an important role. In the region with lowest simulated O2 concentrations (around 56 °N, 6.5 °E), riverine N on average contributes 39% to overall near-bottom O2 consumption during seasonal stratification. Here, the German and the large Dutch rivers constitute the highest riverine contributions (11% and 10%, respectively). At a site in the Oyster Grounds (around 54.5 °N, 4 °E), the average riverine contribution adds up to 41%, even exceeding that of the North Atlantic. Here, highest riverine contributions can be attributed to the Dutch and British rivers adding up to almost 28% on average. The atmospheric contribution results in 13%. Our results emphasize the importance of anthropogenic N inputs and seasonal stratification for the O2 conditions in the southern North Sea. They further suggest that reductions in the riverine and atmospheric N inputs may have a relevant positive effect on the O2 levels in this region

    Mechanisms controlling the air-sea CO2 flux in the North Sea

    Get PDF
    The mechanisms driving the air–sea exchange of carbon dioxide (CO2CO2) in the North Sea are investigated using the three-dimensional coupled physical–biogeochemical model ECOHAM (ECOlogical-model, HAMburg). We validate our simulations using field data for the years 2001–2002 and identify the controls of the air–sea CO2CO2 flux for two locations representative for the North Sea's biogeochemical provinces. In the seasonally stratified northern region, net CO2CO2 uptake is high (View the MathML source2.06molm-2a-1) due to high net community production (NCP) in the surface water. Overflow production releasing semi-labile dissolved organic carbon needs to be considered for a realistic simulation of the low dissolved inorganic carbon (DIC) concentrations observed during summer. This biologically driven carbon drawdown outcompetes the temperature-driven rise in CO2CO2 partial pressure (pCO2pCO2) during the productive season. In contrast, the permanently mixed southern region is a weak net CO2CO2 source (View the MathML source0.78molm-2a-1). NCP is generally low except for the spring bloom because remineralization parallels primary production. Here, the pCO2pCO2 appears to be controlled by temperature

    Distinct Mechanisms Underlying Interannual to Decadal Variability of Observed Salinity and Nutrient Concentration in the Northern North Sea

    No full text
    The influence of large-scale oceanic circulation on salinity in the northern North Sea has lead to the hypothesis that nutrient concentrations in this region are also driven by remote oceanic anomalies. Here, using a newly established biogeochemical data set of the North Sea, we show that interannual to decadal variability in winter nutrient concentrations exhibits distinct phase deviations from salinity. The variability in salinity is explained by zonal shifts in the position of the subpolar front (SPF) in the eastern North Atlantic and the associated advective delay. However, the high correlation and absence of advective delay between the position of the SPF and winter nutrient concentrations in the Shetland region (59–61°N, 1°W to 3°E) point to the role of atmospheric variability in driving concurrent changes in winter nutrient concentrations and the SPF position. Our analysis suggests that the prevailing wind direction and local distribution of winter nutrient concentrations together determine the interannual to decadal variability in winter nutrient concentrations in this region. In the analyzed observations, we find a strong spatial gradient in mean winter nutrient concentrations northwest of the Shetland region, which is absent in salinity. The horizontal shift of this spatial gradient, forced by changes in wind direction, has a larger influence on winter nutrient concentration in the Shetland region than the nutrient signal in oceanic anomalies originating from the eastern subpolar North Atlantic. Overall, we conclude that interannual to decadal variability in the observed nutrient concentrations is mainly driven by atmospheric variability here expressed as wind direction

    Organic matter degradation in the German Bight/SE North Sea: Implications from stable nitrogen isotopes and amino acids

    No full text
    Rising stable nitrogen isotope ratios (δ15N) in dated sediment records of the German Bight/SE North Sea track river-induced coastal eutrophication over the last 2 centuries. Fully exploiting their potential for reconstructions of pristine conditions and quantitative analysis of historical changes in the nitrogen cycle from these sediment records requires knowledge on processes that alter the isotopic signal in non-living organic matter (OM) of sinking particles and sediments. In this study, we analyze the isotopic composition of particulate nitrogen (PN) in the water column during different seasons, in surface sediments, and in sediment cores to assess diagenetic influences on the isotopic composition of OM. Amino acid (AA) compositions of suspended matter, surface sediments, and dated cores at selected sites of the German Bight serve as indicators for quality and degradation state of PN. The δ15N of PN in suspended matter had seasonal variances caused by two main nitrate sources (oceanic and river) and different stages of nitrate availability during phytoplankton assimilation. Elevated δ15N values (> 20‰) in suspended matter near river mouths and the coast coincide with a coastal water mass receiving nitrate with elevated isotope signal (δ15N > 10‰) derived from anthropogenic input. Particulate nitrogen at offshore sites fed by oceanic nitrate having a δ15N between 5 and 6‰ had low δ15N values (< 2‰), indicative of an incipient phytoplankton bloom. Surface sediments along an offshore–onshore transect also reflect the gradient of low δ15N of nitrate in offshore sites to high values near river mouths, but the range of values is smaller than between the end members listed above and integrates the annual δ15N of detritus. Sediment cores from the coastal sector of the gradient show an increasing δ15N trend (increase of 2.5‰) over the last 150 years. This is not related to any change in AA composition and thus reflects eutrophication. The δ15N signals from before AD 1860 represent a good estimation of pre-industrial isotopic compositions with minimal diagenetic overprinting. Rising δ13C in step with rising δ15N in these cores is best explained by increasing productivity caused by eutrophication
    corecore