60 research outputs found

    RAB5A and TRAPPC6B are novel targets for Shiga toxin 2a inactivation in kidney epithelial cells

    Get PDF
    The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells’ Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.publishedVersio

    A New Mint1 Isoform, but Not the Conventional Mint1, Interacts with the Small GTPase Rab6

    Full text link
    Small GTPases of the Rab family are important regulators of a large variety of different cellular functions such as membrane organization and vesicle trafficking. They have been shown to play a role in several human diseases. One prominent member, Rab6, is thought to be involved in the development of Alzheimer’s Disease, the most prevalent mental disorder worldwide. Previous studies have shown that Rab6 impairs the processing of the amyloid precursor protein (APP), which is cleaved to β-amyloid in brains of patients suffering from Alzheimer’s Disease. Additionally, all three members of the Mint adaptor family are implied to participate in the amyloidogenic pathway. Here, we report the identification of a new Mint1 isoform in a yeast two-hybrid screening, Mint1 826, which lacks an eleven amino acid (aa) sequence in the conserved C-terminal region. Mint1 826, but not the conventional Mint1, interacts with Rab6 via the PTB domain. This interaction is nucleotide-dependent, Rab6-specific and influences the subcellular localization of Mint1 826. We were able to detect and sequence a corresponding proteolytic peptide derived from cellular Mint1 826 by mass spectrometry proving the absence of aa 495–505 and could show that the deletion does not influence the ability of this adaptor protein to interact with APP. Taking into account that APP interacts and co-localizes with Mint1 826 and is transported in Rab6 positive vesicles, our data suggest that Mint1 826 bridges APP to the small GTPase at distinct cellular sorting points, establishing Mint1 826 as an important player in regulation of APP trafficking and processing

    Shiga toxin receptor Gb3Cer/CD77:tumor-association and promising therapeutic target in pancreas and colon cancer

    Get PDF
    BACKGROUND: Despite progress in adjuvant chemotherapy in the recent decades, pancreatic and colon cancers remain common causes of death worldwide. Bacterial toxins, which specifically bind to cell surface-exposed glycosphingolipids, are a potential novel therapy. We determined the expression of globotriaosylceramide (Gb3Cer/CD77), the Shiga toxin receptor, in human pancreatic and colon adenocarcinomas. METHODOLOGY/PRINCIPAL FINDINGS: Tissue lipid extracts of matched pairs of cancerous and adjacent normal tissue from 21 pancreatic and 16 colon cancer patients were investigated with thin-layer chromatography overlay assay combined with a novel mass spectrometry approach. Gb3Cer/CD77 was localized by immunofluorescence microscopy of cryosections from malignant and corresponding healthy tissue samples. 62% of pancreatic and 81% of colon adenocarcinomas showed increased Gb3Cer/CD77 expression, whereas 38% and 19% of malignant pancreas and colon tissue, respectively, did not, indicating an association of this marker with neoplastic transformation. Also, Gb3Cer/CD77 was associated with poor differentiation (G>2) in pancreatic cancer (P = 0.039). Mass spectrometric analysis evidenced enhanced expression of Gb3Cer/CD77 with long (C24) and short chain fatty acids (C16) in malignant tissues and pointed to the presence of hydroxylated fatty acid lipoforms, which are proposed to be important for receptor targeting. They could be detected in 86% of pancreatic and about 19% of colon adenocarcinomas. Immunohistology of tissue cryosections indicated tumor-association of these receptors. CONCLUSIONS/SIGNIFICANCE: Enhanced expression of Gb3Cer/CD77 in most pancreatic and colon adenocarcinomas prompts consideration of Shiga toxin, its B-subunit or B-subunit-derivatives as novel therapeutic strategies for the treatment of these challenging malignancies

    Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome

    No full text
    The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia

    Enterohemorrhagic <i>Escherichia coli</i> and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility

    No full text
    Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research

    Structural characterization of gangliosides from resting and endotoxin-stimulated murine B lymphocytes

    Get PDF
    Pörtner A, Peter-Katalinic J, Brade H, Unland F, Büntemeyer H, Müthing J. Structural characterization of gangliosides from resting and endotoxin-stimulated murine B lymphocytes. Biochemistry. 1993;32(47):12685-12693.B lymphocytes from CBA/J mice were stimulated in splenocyte cultures for 72 h with various endotoxins. Bisphosphoryl lipid A from Escherichia coli had the highest stimulatory effect followed by LPS of Citrobacter freundii and Salmonella minnesota as measured by [H-3]thymidine uptake. Gangliosides of stimulated B cells (metabolically labeled with D-[1-C-14]galactose and D-[1-C-14]glucosamine) and unlabeled gangliosides from resting B cells (prepared from spleens without stimulus) were analyzed by high-performance TLC, DEAE anion-exchange HPLC, and immunostaining procedures. Contents of ganglioside-derived sialic acids, quantified by HPLC as their fluorescent derivatives, decreased from stimulated to resident B lymphocytes in the following order: LPS S. minnesota > LPS C.freundii > bisphosphoryl lipid A E. coli > resting B cells. Gangliosides of resting B cells contained more N-glycolyl- than N-acetylneuraminic acid, whereas inverse ratios were found in activated cells, indicating a shift from N-glycolyl- to N-acetylneuraminic acid due to stimulation. Furthermore, a higher disialoganglioside content was characteristic for activated B cells. Fast atom bombardment mass spectrometry was performed with permethylated mono- and disialoganglioside fractions of LPS S. minnesota and LPS C.freundii stimulated B cells. Major gangliosides were G(M1a) and G(D1a) beside minute amounts of G(D1b). The structural heterogeneity in the gangliosides was caused by (a) N-substitution of the sialic acids with either acetyl or glycolyl groups, (b) variation in the long-chain base (sphingosine, sphinganine), and (c) substitution of the ceramide moiety by fatty acids of different chain length and degree of unsaturation (C-16:0, C24:0,24:1). In summary, these findings indicate the predominance of the G(M1a) pathway in murine B lymphocytes whereas G(M1b)-type gangliosides are preferentially expressed in T lymphocytes as well as macrophages

    Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity

    No full text
    Munzert E, Müthing J, Büntemeyer H, Lehmann J. Sialidase activity in culture fluid of Chinese hamster ovary cells during batch culture and its effect on recombinant human antithrombin III integrity. BIOTECHNOLOGY PROGRESS. 1996;12(4):559-563.Sialidase activity in cell-free supernatant of batch-cultivated Chinese hamster ovary (CHO) cells producing human recombinant antithrombin III (rhAT III) was monitored during cultivation using 4-methylumbelliferyl substrate and HPLC for free sialic acid determination. Supernatant sialidase as well as lactate dehydrogenase activity increased significantly during batch growth. The enhanced number of dead cells correlated with increasing sialidase activity which seemed to be principally due to cell lysis, resulting in release of cytosolic sialidase. Loss of terminally alpha(2-->3) bound sialic acids of the oligosaccharides of rhAT III was analyzed in lectin-based Western blot and enzyme-linked lectin assays, using Maackia amurensis and Datura stramonium agglutinins for specific determination of Neu5Ac alpha(2-->3)Gal- and Gal beta(1-->4)GlcNAc-terminated glycoproteins, respectively. Results show a remarkable loss of terminal sialic acids of rhAT III along with decrease in CHO cell viability and concomitant increase of dead cells throughout long-term batch cultivation. To avoid this degradation effect, process parameters forcing high viability are essential and harvesting of culture at an early time even at suboptimal recombinant protein concentrations is highly recommended to avoid product desialylation

    Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor

    No full text
    Müthing J, Duvar S, Nerger S, Büntemeyer H, Lehmann J. Microcarrier cultivation of bovine aortic endothelial cells in spinner vessels and a membrane stirred bioreactor. CYTOTECHNOLOGY. 1995;18(3):193-206.Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell(R) microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l(-1) to 3 g l(-1) of microcarriers. Out of five types of Dormacell(R) microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meg g(-1), corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded with ca 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g 1(-1)
    • …
    corecore