16 research outputs found

    DETC2005-84524 CROSS-SECTION DEFORMATION IN THE ABSOLUTE NODAL COORDINATE FORMULATION

    Get PDF
    ABSTRACT In this investigation, the deformation modes defined in the finite element absolute nodal coordinate formulation using several strain definitions are discussed. In order to accurately define strain components that can have easy physical interpretation, a material coordinate system is introduced to define the material element rotation and deformation. The results obtained in this study clearly show cross-section deformation modes eliminated when the number of the finite element nodal coordinates is systematically and consistently reduced. Using the procedure discussed in this paper, one can obtain a reduced order dynamic model, eliminate position vector gradients that introduce high frequencies to the solution of some problems, achieve the continuity of the remaining gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy

    Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples,”

    No full text
    For the modeling of large deformations in multibody dynamics problems, the absolute nodal coordinate formulation (ANCF) is advantageous since in general, the ANCF leads to a constant mass matrix. The proposed ANCF beam finite elements in this approach use the transverse slope vectors for the parameterization of the orientation of the cross section and do not employ an axial nodal slope vector. The geometric description, the degrees of freedom, and a continuum-mechanics-based and a structural-mechanics-based formulation for the elastic forces of the beam finite elements, as well as their usage in several static problems, have been presented in a previous work. A comparison to results provided in the literature to analytical solution and to the solution found by commercial finite element software shows accuracy and high order convergence in statics. The main subject of the present paper is to show the usability of the beam finite elements in dynamic and buckling applications

    Multibody system dynamics, robotics and control

    No full text
    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification

    A projection-based approach for the derivation of the floating frame of reference formulation for multibody systems

    No full text
    The reduction in the number of coordinates for flexible multibody systems is necessary in order to achieve acceptable simulation times of real-life structures and machines. The conventional model order reduction technique for flexible multibody systems is based on the floating frame of reference formulation (FFRF), using a rigid body frame and superimposed small flexible deformations. The FFRF leads to strongly coupled terms in rigid body and flexible coordinates as well as to a non-constant mass matrix. As an alternative to the FFRF, a formulation based on absolute coordinates has been proposed which uses a co-rotational strain. In this way, a constant mass matrix and a co-rotational stiffness matrix are obtained. In order to perform a reduction in the number of coordinates, by means of the component mode synthesis, e.g., the number of modes needs to be increased, such that all modes are represented in every possible rotated configuration. This approach leads to the method of generalized component mode synthesis (GCMS). The present paper shows in detail how the equations of motion of the FFRF evolve from the ones of the GCMS by considering rigid body constraint conditions and subsequently eliminating them via an appropriate null-space projection. This approach allows a straightforward, term-by-term interpretation of the FFRF mass matrix and of the generalized gyroscopic forces, which, to the same extent, cannot be deduced from former publications on the FFRF. From a practical point of view, the resulting expressions allow to calculate all inertia coefficients from the constant finite element mass matrix together with standard input data of the finite element model in the course of a preprocessing step. Then, the repeated updates of the FFRF mass matrix and of the gyroscopic forces in the course of time integration involve only simple vector matrix operations of low dimensions. In contrast to previous implementations of the FFRF, no evaluations of extra inertia integrals are required. Consequently, the present formulation can be implemented entirely independent of the related finite element code.(VLID)4714528Version of recor

    Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples

    No full text
    In the present paper, a three-dimensional shear deformable beam finite element is presented, which is based on the absolute nodal coordinate formulation (ANCF). The orientation of the beam's cross section is parameterized by means of slope vectors. Both a structural mechanics based formulation of the elastic forces based on Reissner's nonlinear rod theory, as well as a continuum mechanics based formulation for a St. Venant Kirchhoff material are presented in this paper. The performance of the proposed finite beam element is investigated by the analysis of several static and linearized dynamic problems. A comparison to results provided in the literature, to analytical solutions, and to the solution found by commercial finite element software shows high accuracy and high order of convergence, and therefore the present element has high potential for geometrically nonlinear problems

    Multibody System Dynamics, Robotics and Control

    No full text
    X, 314 p. 160 illus.online resource

    A noninvasive system‐level model order reduction scheme for flexible multibody simulation

    No full text
    This paper presents a novel system‐level model order reduction scheme for flexible multibody simulation, namely the system‐level affine projection (SLAP). Contrary to existing system‐level model order reduction approaches for multibody systems simulation, this methodology allows to obtain a constant reduced order basis which can be obtained in a noninvasive fashion with respect to the original flexible multibody model. It is shown that this scheme enables an automatic joint constraint elimination which can be obtained at low computational cost through exploitation of the component level modes typically employed in flexible multibody simulation. The equations of motion are derived such that the computational cost of the resulting SLAP model is independent of the original model size. This approach results in a set of ordinary differential equations with a constant mass matrix and nonlinear internal forces. This structure makes the resulting model suitable for a range of estimation, control, and design applications. The proposed approach is validated numerically on a flexible four‐bar mechanism and shows good accuracy for a very low‐order SLAP model.status: Published onlin
    corecore