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Abstract Many widely used beam finite element formulations are based either on Reiss-
ner’s classical nonlinear rod theory or the absolute nodal coordinate formulation (ANCF).
Advantages of the second method have been pointed out by several authors; among the ben-
efits are the constant mass matrix of ANCF elements, the isoparametric approach and the
existence of a consistent displacement field along the whole cross section. Consistency of
the displacement field allows simpler, alternative formulations for contact problems or in-
elastic materials. Despite conceptional differences of the two formulations, the two models
are unified in the present paper.

In many applications, a nonlinear large deformation beam element with bending, ax-
ial and shear deformation properties is needed. In the present paper, linear and quadratic
ANCF shear deformable beam finite elements are presented. A new locking-free continuum
mechanics based formulation is compared to the classical Simo and Vu-Quoc formulation
based on Reissner’s virtual work of internal forces. Additionally, the introduced linear and
quadratic ANCF elements are compared to a fully parameterized ANCF element from the
literature. The performance of the respective elements is evaluated through analysis of con-
ventional static and dynamic example problems. The investigation shows that the obtained
linear and quadratic ANCF elements are advantageous compared to the original fully para-
meterized ANCF element.
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1 Introduction

Many of the currently used large deformation beam elements are based on two different
theories: Reissner’s nonlinear rod theory [11] and the absolute nodal coordinate formulation
(ANCF) by Yakoub and Shabana [16]. Finite elements based on Reissner’s theory have been
presented first by Simo and Vu-Quoc in [14]. The absolute nodal coordinate formulation [13]
was developed as an alternative for the modeling of large deformation structural problems
in two and three space dimensions. The main conceptual difference in contrast to classical
large rotation vector formulation is the absence of rotational degrees of freedom. In a recent
study [2], it has been shown that Bernoulli–Euler ANCF elements may differ from classical
beam theories such as the Euler Elastica, and it has been demonstrated how the results of
both theories can be brought into agreement. In a further work [3], it has been shown that
Reissner’s shear deformable beam, as implemented by Simo and Vu-Quoc [14], can also
be implemented with ANCF elements such that the static and dynamic behaviors are fully
equivalent. However, in [3] the order of interpolation of axial position and cross section
orientation was not optimal and different from the approach of Simo and Vu-Quoc [14].

In contrast to formulations in which displacements and rotations [14] or displacements
and slopes [12] are interpolated, different formulations exist, which employ strains as ba-
sic interpolated variables and therefore do not suffer from locking; see e.g. [1]. For further
information on various types of locking, such as Poisson locking, see [15], or combined
shear and thickness locking, see [4]. In the present paper, the ANCF and the classical non-
linear rod theory are unified in order to describe a linear and a quadratic shear deformable
beam element; see Fig. 1. In contrast to earlier works on shear deformable ANCF elements,
e.g. [7–9], the strain energy is computed according to Simo and Vu-Quoc [14]. For the in-
terpolation of displacements and displacement gradients in the linear ANCF element, linear
shape functions are chosen according to [8]. In the quadratic ANCF element, quadratic shape
functions similar to [9] are used for the interpolation of displacements and displacement gra-
dients. The kinematic description of the elements is chosen in a way similar to [7], while the
strain energy is considerably different from [7]. Here, a detailed description and convergence
analysis is presented and compared to the standard ANCF element proposed in [3], which
is originally based on the large rotation vector formulation by Simo and Vu-Quoc [14]. In
the sequel, this element is referred to as fully parameterized ANCF element [3]. The position
vector of the fully parameterized ANCF element [3] uses third-order interpolation, while the
rotation of the cross section is only interpolated linearly with respect to the beam axis.

Sections 2 and 3 cover the geometric description of the finite elements, as well as the
choice of degrees of freedom for the linear and quadratic ANCF elements. Section 4 deals
with different definitions of strain energy for the ANCF beam elements. The present work

Fig. 1 Position vector and slopes
of the planar shear deformable
absolute nodal coordinate beam
finite element: (a) linear element,
(b) quadratic element
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covers a formulation of the elastic forces based on Reissner’s nonlinear rod theory, as well
as a continuum mechanics approach based on a St. Venant–Kirchhoff material law. For a
continuum mechanics based derivation of Reissner’s finite-strain beam theory, see [5]. Note
that it is possible to transform any suitable continuum mechanics based constitutive law
from the continuum level to the beam level; for details, refer to Irschik and Gerstmayr [6].

In the original shear deformable ANCF element by Omar and Shabana [10], the strain
energy is defined with a St. Venant–Kirchhoff material law, which uses a linear relation
between the Green strain tensor and the second Piola–Kirchhoff stress tensor. In the sequel,
the latter formulation is referred to as standard continuum mechanics based formulation,
and it is presented in Sect. 4.1. The main problem of the formulation introduced in [10] is
the Poisson locking phenomenon.

To avoid the locking effect, the strain energy is modified. To be more precise, the elastic-
ity tensor is split into two parts. The first part does not take into account the Poisson ratio ν,
while the second part covers the Poisson effect; for details, refer to Sect. 4.2. This adapted
formulation is denoted as enhanced continuum mechanics based formulation.

The definition of strain energy based on Reissner’s nonlinear rod theory is presented
in Sect. 4.3. The generalized strains in this formulation can be related to the deformation
field of the ANCF element, see [3]. As proposed by Simo and Vu-Quoc [14], shear locking
is eliminated by means of reduced integration. The special choice of degrees of freedom
allows thickness deformation of the proposed elements. The strain energy is enhanced by
a corresponding term, which is not present in the original strain energy by Simo and Vu-
Quoc [14]. The thickness deformation of the beams is of interest e.g. for applications such
as rolling mills. The according linear and quadratic finite elements are investigated using
several static and dynamic numerical examples. Results are presented in Sect. 5.

The main result of the present paper is that the strain energy of the proposed ANCF
elements is equivalent to that of the fully parameterized ANCF element [3]. Moreover, the
proposed linear ANCF element has less degrees of freedom, but shows the same convergence
order, as the fully parameterized ANCF element [3]. The proposed quadratic ANCF element
has the same number of degrees of freedom as the fully parameterized ANCF element [3]
but with a higher order of convergence.

2 Geometric description of the finite elements

The aim of this section is the definition of the geometric setup of a shear deformable beam
finite element. The shear deformation can be taken into account by means of an additional
angle between the beam axis and the normal to the cross section. In the paper by Simo and
Vu-Quoc [14], a deformation angle was suggested to parameterize the cross-sectional de-
formation. On the contrary, Omar and Shabana [10] designed an ANCF element, in which
slope vectors are used. For the present element, the latter approach is used; however, only
one slope vector is employed to model the deformation of the cross section. More precisely,
the transverse gradient vector or slope vector, which points in direction of the cross sec-
tion, is utilized similarly to [7]. The element is thus parameterized by displacements and
displacement gradients at specific nodes which form the degrees of freedom. The position
vector of the element nodes specifies the position of the beam axis, while the direction of
the transverse gradient models shear deformation, whereas its length represents thickness
deformation.

Due to the fact that only parts of the deformation gradient are considered, the element
is not fully parameterized. An example for a fully parameterized element is [3]. Never-
theless, the nodal coordinates can be related to the nodal coordinates used by Simo and
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Fig. 2 Different configurations
of the beam: (a) unit element,
(b) straight scaled reference
element in unit configuration,
(c) reference element and
(d) deformed element in
deformed configuration

Vu-Quoc [14], not taking into account thickness deformation. Since the interpolation of the
geometry in the reference configuration and the displacements will be based on a single set
of functions, the finite element approach is called isoparametric. Four different configura-
tions of the element, depicted in Fig. 2, are considered:

(a) the unit element ranging on the unit square [−1,1]× [−1,1], which is embedded in the
local dimensionless coordinate system (ξ0, η0)

(b) the scaled straight element of length L and height H , measured in meters, which is
embedded in the local coordinate system (ξ, η), and which allows the definition of slope
vectors

(c) the reference element, which represents the stress-free, possibly distorted configuration
of the element in the global coordinate system (x, y)

(d) the deformed element in the global coordinate system (x, y)

The transformation from the unit element (a) to the scaled straight element (b) leads to a
scaling of coordinates

ξ = Lξ0

2
and η = Hη0

2
. (1)

It is essential to define the slope vectors as derivatives with respect to the local coordinate
system (ξ, η) and not the dimensionless coordinates (ξ0, η0), since otherwise the coordinate
transformation (1) would lead to additional scaling factors for the slope vectors. Therefore
the shape functions will be defined for the scaled straight element (b), i.e. as functions of
ξ and η. The configurations (c) and (d) could also be described in coordinate-free notation.
However, for the computer implementation, a certain global coordinate system (x, y) is
chosen. All quantities are represented in this global coordinate system (x, y).

The position vector of the local point (ξ, η) in the undeformed geometry shall be denoted
by r0(ξ, η). It corresponds to the position vector r(ξ, η) in the deformed geometry, see Fig. 2.
Introducing the displacement vector u(ξ, η) yields

r(ξ, η) = r0(ξ, η) + u(ξ, η). (2)

Throughout the following, primes indicate the derivative with respect to the local axial coor-
dinate ξ , r′ = ∂r

∂ξ
. For the description of the slope vectors of the beam cross section, the dis-
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placement gradients with respect to the transverse coordinate η are used, which are denoted
by r,η = ∂r

∂η
. The position vector of the axis r is defined as

r(ξ) = r(ξ,0). (3)

Then, r′ is the tangent direction of the beam centerline. The vector t2 is defined to point in
direction of the deformed beam cross section, while t1 is perpendicular to t2. All quantities
associated with the reference configuration are indexed with subscript zero, e.g. t0 1, t0 2 and
r′

0 in the reference configuration correspond to t1, t2 and r′ in deformed configuration.

3 A linear and quadratic ANCF elements

In the following, both a linear and a quadratic ANCF elements based on the geometrical de-
scription from Sect. 2 shall be defined. The degrees of freedom are defined in two and three
nodes, respectively. In contrast to standard ANCF elements, in which position and slope vec-
tors are chosen, the respective displacement-based quantities, i.e. the nodal displacements
and change of slope vectors, are used here. Appropriate linear and quadratic shape functions
are defined.

3.1 Linear ANCF element

For the linear ANCF beam element, two nodes are chosen at the ends of the centerline of the
beam. A sketch of the element is provided in Fig. 1(a). Four element coordinates are defined
in each node n, namely the components of the nodal displacement u(n) and u(n)

,η , the change
of the slope vector,

q(n) = [
u(n)T u(n)T

,η

]T = [
u(n)

x u(n)
y u(n)

x,η u(n)
y,η

]T
. (4)

The displacements u(1),u(2) and displacement gradients u(1)
,η ,u(2)

,η at the nodal points are
chosen as element degrees of freedom, leading to the vector of unknowns:

q = [
q(1)T q(2)T

]T = [
u(1)T u(1)T

,η u(2)T u(2)T
,η

]T
. (5)

The reference element in the linear case is determined by the generalized coordinate vector
q0 = [r(1)T

0 r(1)T

0,η r(2)T

0 r(2)T

0,η ]T , in which e.g. r(1)

0 = [q0 1, q0 2]T and r(1)

0,η = [q0 3, q0 4]T , as can
be seen in Fig. 3. The displacement vector u is interpolated linearly not only on the beam
centerline, but on the whole element. It is given in terms of the m = 4 shape functions Si

and the 2m element coordinates qj listed in the vector of unknowns q = [q1, . . . , q8]T :

u(ξ, η) =
m∑

i=1

Si(ξ, η)[q2i−1 q2i]T . (6)

In order to obtain sparse mass and stiffness matrices, the shape functions have to be chosen
such that they vanish in all but one degree of freedom. This leads to four scalar boundary
conditions, which are sufficient to define the linear shape functions uniquely. According to
[8] they read

S1(ξ, η) = 1

L

(
L

2
− ξ

)
, S2(ξ, η) = ηS1(ξ, η),

S3(ξ, η) = 1

L

(
L

2
+ ξ

)
, S4(ξ, η) = ηS3(ξ, η).

(7)
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Fig. 3 Configuration of the
linear undeformed reference
element, in which q0 j are the
entries of the generalized
coordinate vector q0

Fig. 4 Configuration of the
quadratic undeformed reference
element, in which q0 j are the
entries of the generalized
coordinate vector q0

The shape function matrix is built from the shape functions in the following way:

S =
[

S1 0 S2 0 S3 0 S4 0
0 S1 0 S2 0 S3 0 S4

]
. (8)

Equation (2) now can be rewritten in terms of the shape function matrix S and the general-
ized coordinate vectors q and q0:

r = S(q0 + q). (9)

3.2 Quadratic ANCF element

For the quadratic ANCF beam element, three nodes are chosen at the end points and mid-
point of the beam axis, as depicted in Fig. 1(b). The displacements u(1),u(2),u(3) and dis-
placement gradients u(1)

,η ,u(2)
,η ,u(3)

,η at the nodal points are chosen as degrees of freedom.
Therefore, the unknowns for the additional node are added to the unknowns of the linear
case in the following way:

q = [
u(1)T u(1)T

,η u(2)T u(2)T
,η u(3)T u(3)T

,η

]T
. (10)

For the additional midpoint node, the initial position r(3)

0 = [q0 9, q0 10]T and the initial di-
rection of the cross section r(3)

0,η = [q0 11, q0 12]T are introduced, see Fig. 4. For the nodes at
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the end points of the element, all notations from the linear ANCF element are kept. In the
quadratic case, the displacement vector u is interpolated quadratically by m = 6 shape func-
tions, leading again to the relation in (6). The shape functions are chosen similar to those
given in [9] as

S1(ξ, η) = − 2

L2
ξ

(
L

2
− ξ

)
, S2(ξ, η) = ηS1(ξ, η),

S3(ξ, η) = + 2

L2
ξ

(
L

2
+ ξ

)
, S4(ξ, η) = ηS3(ξ, η),

S5(ξ, η) = − 4

L2

(
ξ − L

2

)(
ξ + L

2

)
, S6(ξ, η) = ηS5(ξ, η).

(11)

The shape function matrix S is built similarly to (8) for the linear ANCF beam element.

4 Strain energy in case of ANCF elements

4.1 Standard continuum mechanics based formulation

The original formulation for a shear deformable ANCF beam is based on the work of Omar
and Shabana [10]. Herein, the energy of elastic forces follows from the continuum mechan-
ics approach, using the relation between the nonlinear Green–Lagrange strain tensor and the
second Piola–Kirchhoff stress tensor. The Green–Lagrange strain tensor E is defined as

E = 1

2

(
FT F − I

)
, (12)

in which the deformation gradient F is defined via the derivatives of the position in the
following way:

F = ∂r
∂r0

= ∂r
∂ξ

∂ξ

∂r0
=

[ ∂r1
∂ξ

∂r1
∂η

∂r2
∂ξ

∂r2
∂η

][ ∂r0 1
∂ξ

∂r0 1
∂η

∂r0 2
∂ξ

∂r0 2
∂η

]−1

, (13)

in which the vector ξ = (ξ, η) denotes the coordinates of the straight scaled reference ele-
ment in unit configuration. The transformation between the scaled straight element and the
possibly distorted reference element is included in the element Jacobian

J = ∂r0

∂ξ
. (14)

In case of a straight and undistorted reference configuration, the element Jacobian simply is
J = I. For the Green–Lagrange strain E and the second Piola–Kirchhoff stress tensor, often
denoted by S in literature, the engineering strain vector ε and stress vector σ are defined as

ε = [Eξξ Eηη 2Eξη]T and σ = [Sξξ Sηη Sξη]T . (15)

In case of a plane state of stress, the constitutive relations are contained in the elasticity
matrix

D = E

(1 − ν2)

[ 1 ν 0
ν 1 0
0 0 1−ν

2

]

, (16)
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in which E is Young’s modulus and ν is Poisson’s ratio. The stress–strain relation can now
be written as

σ = Dε. (17)

In general, the strain energy of a beam element with a rectangular cross section is written in
the following form:

UCM
standard = 1

2

∫ H/2

−H/2

∫ L/2

−L/2
εT Dε det(J) dξ dη, (18)

in which the abbreviation CM indicates the continuum mechanics approach.

4.2 Enhanced continuum mechanics based formulation

The main problem of the standard continuum mechanics based formulation is the Poisson
ratio ν which couples axial strains Eξξ and the transverse normal strains Eηη in the stress–
strain relation (17). Thus, an axial stretch of the unconstrained beam leads to a thickness
deformation. This effect induces Poisson locking, which has to be avoided in order to obtain
useful results also for thin beams. Gerstmayr et al. [3] suggested to split the elasticity matrix
D into two parts,

D = D0 + Dν, (19)

in which D0 does not include the Poisson ratio ν, while Dν involves the Poisson effect only.
In more detail, D0 includes the Young’s modulus E and the shear modulus G in the diagonal;

D0 =
[

E 0 0
0 E 0
0 0 Gks

]

. (20)

The shear correction factor ks accounts for the distribution of the shear stress along the
cross section. The Poisson effect in the axial and transverse deformation is captured in Dν

as follows:

Dν = E

(1 − ν2)

[
ν2 ν 0
ν ν2 0
0 0 0

]

. (21)

Applying (19), the strain energy in (18) is split into two parts,

UCM
enh. = 1

2

∫ H/2

−H/2

∫ L/2

−L/2
εT D0ε det(J) dξ dη

+ 1

2
H

∫ L/2

−L/2
εT Dνε det(J) dξ, (22)

considering the Poisson effect only at the beam axis η = 0. This enhanced formulation elim-
inates the Poisson locking effect.
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4.3 Formulation based on Reissner, Simo and Vu-Quoc

In contrast to the standard and the enhanced formulation, described in Sects. 4.1 and 4.2, in
which the virtual work of elastic forces is deduced from the continuum mechanics approach,
a different derivation for the strain energy in terms of the axial strain Γ1, the shear strain Γ2

and the bending strain K is presented in the following. Reissner [11] stated the virtual work
of the internal forces as

δW =
∫ L

0
(MδK + NδΓ1 + QδΓ2) ds, (23)

in which the integration is performed over the reference coordinate s. The stress resultants,
more precise the normal force N , the shear force Q and the bending moment M fulfill the
generalized nonlinear constitutive relations

N = fN(Γ1,Γ2,K), Q = fQ(Γ1,Γ2,K), M = fM(Γ1,Γ2,K), (24)

in which the functions f depend on a set of generalized strain measures, Γ1, Γ2 and K . In
the present paper, the stress resultants and generalized strains are defined according to Simo
and Vu-Quoc [14]. There, not only a linear relation between resultants and strain measures
is assumed, but the different quantities are also decoupled, setting

N = EAΓ1, Q = ksGAΓ2, M = EIK. (25)

For the above definitions, the axial stiffness EA, the shear stiffness GA with the shear
correction factor ks = 10(1+ν)

12+11ν
and the bending stiffness EI are used. E represents Young’s

modulus and A is the area of the cross section. G represents the shear modulus, I is the
second moment of area of the cross section. The quantity K denotes the change of angle of
the cross section relatively to the reference length:

K = r,η × r′
,η

|r,η|2 . (26)

The generalized strains Γ1 and Γ2 are introduced as follows:

Γ1 = tT1 r′ − 1, Γ2 = tT2 r′, (27)

in which the vectors t1 and t2 are defined as

t2 = r,η

|r,η| , t1 = r̂,η

|r,η| = 1

|r,η| [r2,η − r1,η], (28)

in which r̂ is the rotation of vector r by 90 degrees. The combination of (23) and (25)
corresponds to the following strain energy:

UReissner = 1

2

∫ L/2

−L/2

(
EAΓ 2

1 + ksGAΓ 2
2 + EIK2

)
dξ. (29)

In order to enhance the classical strain energy in (29), an additional term accounting for
the strain energy due to thickness deformation has to be introduced. Following Gerstmayr et
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al. [3], the additional thickness strain energy U thickness can be defined, in case of a rectangular
cross section, by

U thickness = 1

2

∫ L/2

−L/2
EAE2

ηη dξ, (30)

in which the transverse component Eηη = 1
2 (rT

,ηr,η − 1) of the Green–Lagrange strain is
used. The quantity Eηη is independent of the stress resultants Γ1, Γ2 and K defined above,
since it only depends on the length |r,η| of the slope vector, while Γ1, Γ2 and K can be
expressed in terms of the normalized vectors t1, t2 and the direction of the beam axis r′.

The total strain energy then reads

U = UReissner + U thickness. (31)

Due to the choice of Eηη , axial and thickness deformations are decoupled. The thickness
strain energy (30) stabilizes the element with respect to thickness deformation. In case of
no external compressive or tensile forces acting in vertical direction, the element thickness
is not changed at all and a reduced stiffness of the deformation of the cross section may be
taken into account without changing the overall behavior of the element while reducing the
eigenfrequency of thickness modes. The model introduced in (30) corresponds to a material
with Poisson’s ratio ν = 0.

While the variation of the strain energy due to Simo and Vu-Quoc, (29), is integrated
numerically using a Gaussian quadrature rule, for the terms due to thickness variation, (30),
a Lobatto integration formula is utilized, where the nodal points of the element are used as
integration points. Since the shape functions are defined on the scaled straight rectangular
element and the integration points on the unit interval [−1,+1], the element transformation
(1) has to be included.

5 Numerical examples

In order to show the validity of the proposed ANCF elements and to illustrate the perfor-
mance, several static and dynamic examples are considered.

Both the linear and the quadratic ANCF elements have been implemented in the frame-
work of the multibody and finite element research code HOTINT.1 For verification, nu-
merical examples taken from [3] were investigated using the proposed elements with the
Reissner–Simo–Vu-Quoc strain energy in Sect. 4.3.

As a first example, a cantilever beam under two different vertical tip loads leading either
to small or large deformation is studied. The beam is discretized with different numbers of
linear and quadratic ANCF elements. In addition, the effect of reduced integration on the
convergence is studied for the quadratic ANCF element.

In a second analysis, the natural frequencies of a simply supported beam are computed
and the corresponding eigenvectors are classified. Additionally, a convergence study for the
eigenfrequencies depending on the number of finite elements is presented.

Furthermore, the different formulations, namely the standard and the enhanced contin-
uum mechanics based formulation as well as the Reissner–Simo–Vu-Quoc formulation, de-
scribed in Sect. 4, are compared. The error of the tip displacement of the mentioned can-
tilever beam and the eigenfrequencies of the simply supported beam are utilized as reference
values.

1http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html.

http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html
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Fig. 5 Cantilever beam under a
vertical tip load F

Table 1 Tip displacement in x- and y-directions ux and uy of the cantilever beam in case of small defor-
mations and absolute error for uy calculated with different numbers of linear and quadratic ANCF beam
elements using the Reissner–Simo–Vu-Quoc formulation from Sect. 4.3

# Elements Displacement ux Displacement uy Abs. error for uy

Linear ANCF beam element

1 9.12273046e–8 6.16666566e–4 0.000193

2 1.61293091e–7 7.61594059e–4 4.831e–5

4 1.81763233e–7 7.97825954e–4 1.208e–5

256 1.88847418e–7 8.09900305e–4 2.945e–9

Quadratic ANCF beam element

1 1.86982122e–7 8.09903209e–4 4.1e–11

Simo–Vu-Quoc (MAPLE) [3] 1.8884916e–7 8.0990325e–4

5.1 Cantilever beam

At first, a cantilever beam under a vertical tip load F is studied. For a sketch of the problem
setup, see Fig. 5. The beam has length L = 2 m, cross section of height h = 0.5 m and width
w = 0.1 m. The beam is made of steel with a Young’s modulus E = 2.07 × 1011 N/m2 and a
Poisson ratio of ν = 0.3. The shear correction factor is chosen as ks = 10(1+ν)

12+11ν
. First, the case

of small deformations is tested. To this end, the vertical tip load is set to F = 5 × 105 ·h3 N.
In Table 1, the tip displacements for different discretizations of the cantilever beam are

compared with the analytical solution of the equations from Simo and Vu-Quoc computed in
Maple, which is taken from [3]. In this calculation, the linear as well as the quadratic ANCF
beam elements use the Reissner–Simo–Vu-Quoc formulation. Moreover, the absolute error
‖uy − u∗

y‖ is provided, where u∗
y denotes the analytically computed y-displacement. In the

case of the linear ANCF beam element using 256 elements, the solution for the displacement
in y-direction shows eight converged digits compared to the solution computed in MAPLE
to an arbitrary precision. Using the quadratic ANCF beam element this level of accuracy
is already obtained for a discretization using four elements. The quadratic ANCF beam
element converges extremely fast with an agreement factor almost one using only one beam
element.

For a vertical tip load F = 5 × 108 · h3 N, the cantilever beam undergoes large deforma-
tions. Again, the results are computed using the Reissner–Simo–Vu-Quoc formulation and
are compared with the exact values provided in [3], see Table 3. Additionally, the fully pa-
rameterized ANCF element proposed in [3], which is originally based on the large rotation
vector formulation by Simo and Vu-Quoc [14], is included in the comparison. The degrees
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Table 2 List of different elements, which are used to draw comparisons. As comparative values serve the
number of nodes, the number of degrees of freedom and the induced convergence order for the tip displace-
ments in the nodes

Element Nodes DOF Convergence order

Fully parameterized ANCF element [3] 2 12 2

Linear ANCF beam element 2 8 2

Quadratic ANCF beam element 3 12 4

Fig. 6 Convergence plot for the cantilever beam example comparing the proposed linear and quadratic
ANCF beam element using the Reissner–Simo–Vu-Quoc formulation from Sect. 4.3 and the fully parameter-
ized ANCF element [3]

of freedom of this fully parameterized ANCF element [3] are position coordinates and two
slope vectors in each of the two nodes. The element has twelve degrees of freedom. The
position vector of the fully parameterized ANCF element [3] is of third order interpolation,
while the rotation of the cross section is only interpolated linearly with respect to the beam
axis. Even though one could expect a third order convergence for displacements in case of
thin beams, the fully parameterized ANCF element [3] suffers from locking and therefore
the convergence rate follows O(n2), where n is the number of elements, see Fig. 6. The
linear ANCF beam element consists of two nodes and eight degrees of freedom. Because
it is not a fully-parameterized element, it needs less degrees of freedom compared to the
fully parameterized ANCF element [3]. The convergence study in Fig. 6 demonstrates that
the proposed linear ANCF element shows the same convergence order as the fully para-
meterized ANCF element [3]. The quadratic ANCF beam element consists of three nodes
and therefore has twelve degrees of freedom. Even though the proposed quadratic ANCF
element has the same number of degrees of freedom as the fully parameterized ANCF el-
ement [3], it shows essentially faster convergence, see Fig. 6. In Table 2, the numbers of
nodes, degrees of freedom (DOF) and convergence orders for the three elements are listed.

For the linear and quadratic ANCF elements developed in this work, the variational equa-
tions of the Reissner–Simo–Vu-Quoc formulation are integrated numerically using Gaussian
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Table 3 Tip displacement in x- and y-directions ux and uy of the cantilever beam in case of large deforma-
tions and absolute error for uy calculated with variable numbers of linear and quadratic ANCF beam elements
using the Reissner–Simo–Vu-Quoc formulation from Sect. 4.3 and compared to reference solution [3]

# Elements Displacement ux Displacement uy Abs. error for uy

Linear ANCF beam element

1 0.07140274 0.54225823 0.168310

2 0.12379212 0.65687111 0.053697

4 0.14346767 0.69593561 0.014633

8 0.14904162 0.70681526 0.003753

16 0.15048522 0.70962389 9.447e–4

1024 0.15097103 0.71056837 2.280e–7

Quadratic ANCF beam element

1 0.13971417 0.68775242 0.022816

2 0.15005721 0.70833713 0.002231

4 0.15090938 0.71040910 0.000159

8 0.15096721 0.71055828 1.032e–5

16 0.15097090 0.71056795 6.480e–7

Fully parameterized ANCF element [3]

1 0.10088348 0.55810849 0.152460

2 0.13526374 0.66661803 0.043950

4 0.14764474 0.70117342 0.009395

8 0.15016361 0.70829393 0.002275

16 0.15077038 0.71000360 5.650e–4

Simo–Vu-Quoc (MAPLE) [3] 0.15097114 0.71056859

and Lobatto integration rules. If the terms are integrated exactly, locking occurs. A common
way to avoid the locking phenomenon of finite elements is to use reduced integration. For
the linear ANCF beam element, selective reduced integration is applied: the classical strain
energy is integrated by a Gaussian integration rule of order one, while the thickness terms
are integrated by a Lobatto integration rule of order two. For the quadratic ANCF beam
element, third-order integration rules are used for all terms. The same integration schemes
are applied to the standard and enhanced continuum mechanics formulation. Even though
reduced integration is used, no hourglass modes appear.

In Table 4, the different formulations from Sect. 4 are compared. The tip displacements
of the large deformation cantilever beam discretized with 2000 linear ANCF elements are
compared. Due to Poisson locking, the standard continuum mechanics formulation does
not show convergence to the analytical value computed in MAPLE given in Table 3. For a
comparison of convergence of the Reissner–Simo–Vu-Quoc formulation and the standard
continuum mechanics formulation with respect to the analytic value, see Fig. 7.

The following convergence study shows the accuracy of the proposed elements for the
chosen integration schemes: the convergence rate of the quadratic ANCF beam element uti-
lizing the Reissner–Simo–Vu-Quoc formulation with respect to the analytical solution is
shown in Fig. 8 and the convergence rate of the quadratic ANCF beam element utilizing the
enhanced continuum mechanics formulation with respect to the converged solution obtained
with 2000 quadratic ANCF elements is shown in Fig. 9. The error in the tip displacement
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Table 4 Tip displacement in x- and y-directions ux and uy of the different formulations using linear ANCF
beam elements

Formulation Displacement ux Displacement uy

2000 linear ANCF beam elements based on

standard continuum mechanics form 0.1350387 0.6626850

enhanced continuum mechanics form 0.1581778 0.7152418

Reissner–Simo–Vu-Quoc 0.1509710 0.7105683

Fig. 7 Comparison of convergence of the Reissner–Simo–Vu-Quoc formulation and the standard continuum
mechanics formulation with respect to the analytic solution calculated in MAPLE [3]

in y-direction is taken as a measure for the comparison of the accuracy of the solution
with and without reduced integration order. In case of the linear ANCF beam element, the
displacement at an arbitrary point converges linearly. In contrast, the convergence of the
displacement at a nodal point is of quadratic order like in the case of the fully parameterized
ANCF element [3], see Fig. 6. Similar effects were found for the quadratic ANCF beam
element in the provided examples. Herein, the convergence rate of the nodal displacement
follows O(n4), see Fig. 8 for the Reissner–Simo–Vu-Quoc formulation and Fig. 9 for the
enhanced continuum mechanics formulation. Since the convergence orders of the quadratic
ANCF beam element utilizing either the Reissner–Simo–Vu-Quoc formulation or the en-
hanced continuum mechanics formulation are the same, the decision, which formulation
should be chosen for an application problem, depends only on the material model.
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Fig. 8 Convergence of the quadratic ANCF beam element utilizing the Reissner–Simo–Vu-Quoc formula-
tion compared to the analytical solution with and without reduced integration application

Fig. 9 Convergence of the quadratic ANCF beam element utilizing the enhanced continuum mechanics
formulation compared to the converged solution with and without reduced integration application
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Fig. 10 Eigenfrequencies (rad/s) and corresponding mode shapes

5.2 Eigenfrequencies of a simply supported beam

In this section, the eigenfrequencies of a simply supported beam are studied. Since analytic
solutions for the eigenfrequencies exist for this case, the following beam parameters in ac-
cordance with [3] are utilized: length L = 2 m, height h = 0.4 m, width w = 0.4 m, density
ρ = 7850 kg/m3, Young’s modulus E = 109 N/m2, Poisson ratio and shear correction factor
remain unchanged with ν = 0.3 and ks = 10(1+ν)

12+11ν
.

In a further study, not shown in the results, it has been verified that three rigid body
modes result from an eigenfrequencies analysis of a free-free beam.

To realize the bearing on the left hand side of the simply supported beam the displace-
ments of the axis in x- and y-directions are set to zero, for the slide bearing on the right
only the displacement in y-direction is fixed. In the succeeding computations, the Reissner–
Simo–Vu-Quoc formulation is utilized for a single quadratic ANCF beam element with
twelve degrees of freedom. Since three degrees of freedom are eliminated by the boundary
constraints, nine eigenvalues can be computed. See Fig. 10 for a visualization of the com-
puted eigenmodes. In addition, a convergence analysis for the eigenfrequencies depending
on the number of elements is presented for the quadratic ANCF beam element. Reduced
integration is used in order to obtain fast convergence. As a consequence, the eigenfrequen-
cies are lower than in the computation without reduced integration. The computed values
are compared to the values from Table 6 in [3]. Here, Simo–Vu-Quoc θ -quad, r-quad de-
notes the eigenfrequencies of the original second order element by Simo and Vu-Quoc,
while Timoshenko (anal.) represents the analytical solution. As a result of quadratic interpo-
lation order, the eigenfrequencies converge quickly to the analytic solution, see Table 5. The
convergence analysis of the first bending mode shows a convergence order of O(n4). The
numerical values of shear and thickness eigenfrequencies calculated with only one quadratic
ANCF element agree with the values for the Simo and Vu-Quoc beam in [3]. The quadratic
ANCF element has additional thickness modes as compared to [3]. If relevant to an appli-
cation, this seams to be the only disadvantage of the proposed element. Even though the
thickness modes seem to be very large, the factor between the shear mode (mode 5) and the
two smaller thickness modes (modes 7 and 8) is merely about 1.75. However, to reveal the
disadvantage of the quadratic ANCF beam element, the third thickness mode (mode 9) is
nearly 2.8 times as large as the pure shear mode. Thus, the present elements can be applied
similarly to classical nonlinear rod elements and for stiff problems time integrators should
be applied to dynamic problems.
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Table 5 Numerical values of bending and axial eigenfrequencies (rad/s) with a different number of elements
utilizing the Reissner–Simo–Vu-Quoc formulation and comparison to analytical values

# Elements Modes

First bend. First axial 2nd bend. 2nd axial

Quadratic ANCF beam element

1 105.148 281.373 1382.33a 1012.36

2 96.642 280.392 358.979 854.85

4 95.702 280.325 335.218 842.012

8 95.638 280.321 332.436 841.031

16 95.634 280.321 332.247 840.966

Simo–Vu-Quoc θ-quad, r-quad 105.148 281.372 2243.456 1012.35

Timoshenko (anal.) 95.634 280.321 332.235 840.962

aComputing the eigenfrequencies without using reduced integration leads to the same value as the Simo–Vu-
Quoc reference value 2243.456.

Table 6 Numerical values of eigenfrequencies (rad/s) with one linear ANCF beam element classified in the
different mode shapes: axial, bending, shear and thickness modes

Formulation Modes

Axial Bending Shear Thickness Thickness

One linear ANCF element based on

standard continuum mechanics form. 308.957 2023.52 1916.94 3241.7 3262.83

enhanced continuum mechanics form. 308.957 1872.01 1766.99 3241.7 3259.44

Reissner–Simo–Vu-Quoc 309.098 618.195 1766.99 3090.98 5353.73

Table 7 Numerical values of eigenfrequencies (rad/s) with one quadratic ANCF beam element

Formulation Modes

First bend. First axial 2nd bend. 2nd axial

One quadratic ANCF element based on

standard continuum mechanics form. 110.606 281.304 1449.07 1007.67

enhanced continuum mechanics form. 105.149 281.298 1382.33 1007.57

Reissner–Simo–Vu-Quoc 105.148 281.373 1382.33 1012.36

In addition to the convergence study of the eigenvalues for the quadratic ANCF beam
element, an analysis of eigenmodes for a single linear and a single quadratic ANCF beam
element is presented in order to compare Reissner–Simo–Vu-Quoc formulation with the
standard and the enhanced continuum mechanics based formulation, mentioned in Sect. 4.
In Table 6 all eigenfrequencies for a linear ANCF beam element are classified in different
mode shapes. In Table 7, the first two bending and axial eigenfrequencies for a quadratic
ANCF beam element employing the different formulations are presented.



262 K. Nachbagauer et al.

6 Conclusion

In the current paper, linear and quadratic shear deformable beam elements with bending, ax-
ial and shear deformation properties are presented. The ANCF finite elements are designed
for large deformation and multibody dynamics problems. The deformation energy accord-
ing to Simo and Vu-Quoc [14] is employed to the proposed elements, enhanced by a term
accounting for thickness deformation and locking is eliminated.

In numerical examples it is shown that the standard continuum mechanics formulation
suffers from locking, while the Reissner–Simo–Vu-Quoc and the enhanced continuum me-
chanics formulation are locking-free and have same order of convergence. The results of the
proposed elements converge to the results in [3]. The decision, which formulation should be
used for an application problem, is dependent on the utilized material law.

It has to be emphasized, that the previously published fully parameterized ANCF element
[3] has 50% more degrees of freedom as compared to the proposed linear element, while
both elements have the same order of convergence. The proposed quadratic ANCF element
has the same number of degrees of freedom as the original ANCF element [3], however it
shows fourth order convergence instead of second order convergence in the original ANCF
element.

Thus, in comparison to previously published elements, the proposed linear element is
much more efficient, because it needs only one integration point for the integration of the
elastic forces compared to eight or ten integration points which are necessary in the original
ANCF element.

The proposed quadratic element has still less integration points compared to the original
ANCF element, while the convergence is much faster.
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