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ABSTRACT 
In this investigation, the deformation modes defined in the 

finite element absolute nodal coordinate formulation using 
several strain definitions are discussed. In order to accurately 
define strain components that can have easy physical 
interpretation, a material coordinate system is introduced to 
define the material element rotation and deformation. The 
results obtained in this study clearly show cross-section 
deformation modes eliminated when the number of the finite 
element nodal coordinates is systematically and consistently 
reduced. Using the procedure discussed in this paper, one can 
obtain a reduced order dynamic model, eliminate position 
vector gradients that introduce high frequencies to the solution 
of some problems, achieve the continuity of the remaining 
gradients at the nodal points, and obtain a formulation that 
automatically satisfies the principle of work and energy. 

 
1  INTRODUCTION 

In the absolute nodal coordinate formulation, only the 
position field is interpolated in order to define a unique rotation 
field that can be determined using the position vector gradients 
[1]. Therefore, finite rotation parameters are not interpolated 
and are not used as nodal coordinates. The gradients, as the 
result of the Polar Decomposition Theorem [2], can be used to 
define a unique rotation field within the element as well as at 
the element boundaries and nodes. By so doing, the problem of 
coordinate redundancy that characterizes existing large 
deformation finite element formulations that interpolate finite 
rotation parameters can be avoided. For this reason, the solution 
obtained using the absolute nodal coordinate formulation does 
not lead to energy drift or violation of the principle of work and 
energy as it is the case in many existing methods. 

While the absolute nodal coordinate formulation can be 
and has been successfully used in many large deformation and 
large rotation applications, numerical problems can be 
encountered in some applications that include very thin and 
very stiff structures. These numerical problems are the result of 
high frequency oscillations induced by the change in gradients 
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used to describe some of the element cross-section deformation 
modes. While implicit time integrations [3,4], reduced order 
integrations and the lower order elements [5-7] can be used to 
solve these numerical problems, another approach that can be 
followed and is adopted in this investigation is to use the strain 
definitions to obtain conditions that can be used to eliminate the 
insignificant deformation modes of the element cross-section. 
To this end, local strain components defined in local frames are 
first defined and used to shed light on the cross-section 
deformation modes. Using these strain definitions, different 
models with different orders can be defined by imposing 
algebraic conditions that can be used to eliminate some of the 
element cross-section deformation degrees of freedom. It is 
shown that some of the existing models such as Reissner and 
Euler-Bernoulli beam models can be systematically obtained 
from the general description used in the absolute nodal 
coordinate formulation. Furthermore, the reduction procedure 
described in this paper ensures the continuity of all the 
gradients at the nodal points. The reduction procedure, 
however, has several drawbacks that include a non-constant 
mass matrix, non-zero centrifugal and Coriolis forces and/or the 
need to solve a system of differential and algebraic equations. 
Therefore, the method discussed in this paper differs from the 
methods that employ the absolute nodal coordinate formulation 
with a smaller number of nodal coordinates and presented in 
previous investigations [5-7]. 

2  ABSOLUTE NODAL COORDINATE FORMULATION 
In this investigation, a three-dimensional beam element is 

used in order to discuss the cross-section deformation modes in 
the absolute nodal coordinate formulation. The displacement 
field of a three-dimensional beam element can be interpolated 
using a polynomial cubic in x and polynomials linear in y and z 
as follows: 

1 2c y z= + +r r w w               (1)  

where I ( )c x=r S e , 1

II ( )x=w S e , 2

III ( )x=w S e  and the 
shape function matrices used in this displacement field are, 
1 Copyright © 2005 by ASME 

e: http://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357360111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dow
respectively, defined as follows:  
[ ]
[ ]
[ ]

I 1 2 3 4

II 1 2

III 1 2

( ) =

( ) =

( ) =

x s s s s

x s s

x s s

S I I 0 0 I I 0 0

S 0 0 I 0 0 0 I 0

S 0 0 0 I 0 0 0 I

   (2)  

where 
2 3 2 3

1 2

2 3 2 3

3 4

1 2

1 3 2 , ( 2 )

3 2 , ( )

1 ,

s s

s s

s s

ξ ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

= − + = − +

= − = − +

= − =

!

!     (3)  

and /xξ = !  where !  is the length of the beam element in 
the undeformed configuration. It can be seen from the 
preceding equations that the shape functions are defined by 
cubic Hermite polynomials for the displacements along the 
beam centerline, while linear polynomials are used for the 
displacements of the beam cross-section. 

Using the displacement field defined by Eq. 1, the matrix 
of the position vector gradients for the beam can be expressed 
as follows: 

/= ∂ ∂J r x                  (4)  

where [ ]Tx y z=x . In the preceding equation, the 
gradients are obtained using differentiation with respect to the 
element coordinates x, y, and z. The matrix of gradients in Eq. 
4 is related to the matrix of gradients gJ  defined by 

differentiation with respect to X=Seo given by g ∂
=

∂

x
J J

X
, 

where eo is the vector of nodal coordinates in the undeformed 
configuration. Assuming that the beam is initially straight and 
substituting Eq. 1 into Eq. 4, one has 

1 2 1 2c

x x xy z= + +  J r w w w w         (5)  
In this equation, subscript x indicates differentiation with 
respect to the element coordinate x; for example, /c c

x x= ∂ ∂r r . 
It is clear from Eq. 5 that w1 and w2 define the position vector 
gradients associated with the spatial coordinates y and z. 
Therefore, the matrix of the position vector gradients of Eq. 5 
can be written as 

c

x yx zx y zy z= + +  J r r r r r         (6)  

where /y y= ∂ ∂r r  and /z z= ∂ ∂r r . It is important to note 
that, when using a shape function that is linear in y and z, the 
position vector gradient associated with the element coordinates 
y and z are defined by the following linear interpolations (see 
Eqs. 1-3): 

 1 2 1 2(1 ) , (1 )y y y z z zξ ξ ξ ξ= − + = − +r r r r r r     (7) 

where k

yr  and k

zr  (k=1,2) represent the gradient nodal 
coordinates at node k. On the other hand, the gradients 
associated with the spatial coordinate x are defined by 

c

x yx zxy z+ +r r r . Since the position vector gradients associated 
with y and z are used to describe the large rigid body motion of 
the cross-section as well as the deformation, the use of the y 
and z linear interpolation leads to less accurate definition of 
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strain components as will be discussed in later sections of this 
paper. 

3  LAGRANGIAN STRAINS 
Using the displacement gradients given by Eq. 6, the 

Green-Lagrange strain components can be obtained for an 
initially straight beam as [8] 

( )

( ) ( )

( )

( )

11

22 33

12

13 23

1
ε 1 ε

2
1 1

ε 1 , ε 1 ,
2 2
1

ε
2
1 1

ε , ε
2 2

c c c c qx

x x x yx x zx

y y z z

c

x y zx y yx y

c

x z zx z yx z y z

y z

z y

z y

= ⋅ − + ⋅ + ⋅ +

= ⋅ − = ⋅ −

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ = ⋅

r r r r r r

r r r r

r r r r r r

r r r r r r r r

  (8)  

where εqx  is higher order shear strain components associated 
with the deformation of the cross-section. Note that the strain 
associated with pure elongation of a beam is defined by the 
one-dimensional Green strain:  

( )1
ε 1

2
nx c c

x x= ⋅ −r r              (9) 

where superscript n is used for the normal strain. Similarly, the 
normal strains produced by pure stretches of the cross-section 
planes along the y and z directions can be, respectively, 
expressed as 

( )1
ε 1

2
ny

y y= ⋅ −r r ,   ( )1
ε 1

2
nz

z z= ⋅ −r r     (10) 

Shear strains due to the deformation of the beam cross-section 
are given by  

1
ε

2
sxy c

x y= ⋅r r ,    
1

ε
2

sxz c

x z= ⋅r r        (11) 

where superscript s refers to shear strains. Similarly, the shear 
strain in y and z plane is defined by 

1
ε

2
syz

y z= ⋅r r                (12) 

The remaining strain components are functions of deformation 
modes associated with bending, torsion, and twist of the cross-
section. However, since the displacement gradients defined by 
Eq. 6 allow for the deformation of the cross-section, these 
strain definitions contain terms that include couplings between 
the rotation strain components and the deformation of the cross-
section as can be seen from Eq. 8. For this reason, more 
detailed discussions on the deformation modes associated with 
the rotation strains will be provided in the following sections 
after introducing local material frames that can be used to 
conveniently provide a clear physical interpretation of the 
modes of deformation of the cross-section. 

4  LOCAL MATERIAL FRAMES 
In this section, a local finite element cross-section 

coordinate system is introduced in order to define local strain 
components. These strain components can be simplified in 
order to obtain the strain definitions used in Reissner�s and 
Euler-Bernoulli beam theories used in many geometrically 
2 Copyright © 2005 by ASME 
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exact beam element models [9-11]. The Polar Decomposition 
Theorem states that the matrix of position vector gradients can 
be written as the product of two matrices; an orthogonal matrix 
that defines the rigid body rotation and a stretch matrix that 
defines the strains and deformation. The orthogonal matrix that 
can be expressed in terms of three independent parameters 
defines a frame in which the gradients and strains can be 
defined. In this section, we consider two alternate forms that 
can be easily determined using the position vector gradients. 
These are the tangent frame and the cross-section frame. 
Cross-Section and Tangent Frames     A reference frame 
that can be used for the local definitions of the strains is the 
cross-section frame. It can be shown that an arbitrary vector 
defined on the cross-section can be expressed as a linear 
combination of the two vectors yr  and zr . Therefore, using 
Gram-Schmidt orthogonalization process and the position 
vector gradients, yr  and zr , one can define an orthonormal 
triad on the deformable beam cross-section as follows [1]: 

, ,y z yo o o o o

y z y

h

h

−
= = = ×

−

r r r
j k i j k

r r r
    (13) 

where /T T
z y y yh = r r r r . Accordingly, the orthonormal 

orientation matrix can be defined as follows: 
 o o o o=   A i j k            (14) 

Another reference frame can be defined using the position 
vector gradients such that the first axis of the reference frame is 
always tangent to the beam centerline, c

xr . Such a coordinate 
system is called the tangent frame and is defined as follows  
[12]: 

t t t t=   A i j k             (15) 
where  

� �
, ,

� �

cc
x yt t t t tx

c c

x x y

×
= = = ×

×

r rr
i k j k i

r r r
     (16) 

where �a  denotes a unit vector in the direction of the vector a, 
that is � /=a a a . In the following, the cross-section and 
tangent frames will be referred to as the local material frame as 
shown in Fig. 1 
QR Decomposition and the Stain Components     In what 
follows, it is shown that the use of the tangent frame leads to 
the definition of the orthogonal matrix that appears in the QR 
decomposition of the matrix of the position vector gradients. 
That is, the matrix At is the orthogonal matrix Q that appears in 
the QR decomposition of the matrix of the position vector 
gradients J defined on the beam centerline, and R is an upper-
triangular matrix. Using the tangent frame defined by Eqs. 15 
and 16, the matrix of the position vector gradients J can be 
expressed as follows: 

t t=J A U               (17) 
where ( )t t T=U A J . Using the displacement gradients defined 
by Eq. 6 for the beam element, one can write  

c p= +J J J              (18) 
where cJ  is the matrix of the position vector gradients defined 
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on the beam centerline, while p c= −J J J  is a function of the 
x,  y and z coordinates. The matrices cJ  and pJ  can be 
defined using the displacement field of Eq. 6 as 

c c

x y z=   J r r r ,   p p

x=   J r 0 0     (19) 

where ( , , )p

x yx zxx y z y z= +r r r . Using the decomposition given 
by Eq. 17, the matrix Ut can be obtained as 

( )t t T tc tp= = +U A J U U          (20) 
where 

( ) ( ) 0

0 0

0 0

( , , ) ( ) 0 0

0 0

t c t t

x y z

tc t T c t t

y z

t

z

t p

x

tp t T p t p

x

t p

x

x

x y z

⋅ ⋅ ⋅

= = ⋅ ⋅

⋅

⋅

= = ⋅

⋅

 
 
 
  

 
 
 
  

i r i r i r

U A J j r j r

k r

i r

U A J j r

k r

   (21) 

It is clear from Eq. 21 that, on the centerline of the beam, one 
has the following decomposition for the matrix of the position 
vector gradients that can be obtained using QR decomposition: 

c t tc= =J A U QR               (22) 

where tcU  is an upper triangular matrix that depends on the 
strains. When first-order approximations are employed, one can 
have the following strain components projected on the tangent 
frame: 

1
(( ) )

2
t T t+ −ε U U I"

1
(( ) )

2
t T t+ −ε U U I"      

(23) 
It is clear from these linearized expressions that the 
contribution of the rotations of the cross-section to the 
longitudinal strain component is given by t p

x⋅ =i r  
t t

yx zxy z⋅ + ⋅i r i r . However, since ry and rz are defined using a 
linear polynomial as given by Eq. 7 in the case of the beam 
element, the derivatives of ry and rz become constant along the 
length [13]. This linear interpolation leads to a less accurate 
definition of the bending strains when strain definitions given 

 

Fig. 1  Absolute nodal coordinates of the beam element 
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by either Eqs. 8 or 23 are used. For this reason, as will be 
discussed in the following sections, the use of the curvature 

definitions given by 2

T d

ds
κ = −

i
k , 3

T d

ds
κ =

i
j  leads to more 

accurate definition of the bending strains since i is defined by 
the vector c

xr  which is approximated using cubic polynomials 
as shown in Eqs. 1-3, where s is the arc-length coordinate. 

5  LOCAL STRAIN DEFINITIONS 
In this section, the nonlinear strain components of the 

element cross-section are expressed using the local material 
frames in order to identify the rotation strain components and 
their coupling with the deformation of the cross-section. To this 
end, the gradients at the material point are projected on the 
material frames and simplifying assumptions regarding the 
deformation of the cross-section are made in order to provide 
the interpretation of the nonlinear strain components obtained 
using the absolute nodal coordinate formulation. 
Curvature and Torsion     The orientation of the Serret-
Frenet frame associated with the spatial curve representing the 
beam centerline can be defined using the unit tangent t, normal 
n, and binormal b. The orientation of this frame can then be 
defined by the transformation matrix [14] 

[ ]f =A t n b              (24) 
From the theory of curves in differential geometry, one has the 
following expressions for the derivatives of t, n and b [14] 

, ,s s sκ κ τ τ= = − + = −t n n t b b n        (25) 
where subscript s refers to differentiation with respect to the 
arc-length s, κ  is the curvature and τ  is the torsion. Using 
the preceding two equations, one can show that 

( )f T f

s=κ A A#                (26) 

where κ#  is the skew-symmetric matrix 
0 0

0

0 0

κ

κ τ

τ

−

= −

 
 
 
  

κ#             (27) 

It can be seen from the preceding equation that torsion is 
defined as rotation about the tangent t, while curvature is 
defined as rotation about the binormal b.  

In the case of the tangent frame, one can write the 
transformation matrix At that defines the orientation of the 
tangent frame in the global coordinate system in terms of the 
matrix Af that defines the orientation of the Serret-Frenet frame 
as follows: 

t f tf=A A A                 (28) 
where Atf is the matrix that defines the orientation of the 
tangent frame with respect to the Serret-Frenet frame. This 
matrix can be expressed in terms of one angle β  as follows: 

1 0 0

0 cos sin

0 sin cos

tf β β

β β

= −

 
 
 
  

A           (29) 

It follows that 
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0 cos cos

( ) cos 0

cos 0

t t T t t

s

κ β κ γ

κ β τ

κ γ τ

−

= = = −

−

 
 
 
  

κ A A κ# #  (30) 

where tκ#  is the curvature-torsion matrix associated with the 
tangent frame and γ  is an angle between the binormal b and 
the second axis of the tangent frame jt  given by 

/ 2γ β π= − . It is shown in Eq. 30 that when the tangent 
frame is used, the rotational component associated with the 
longitudinal axis remains the same as the torsion defined in 
Serret-Frenet frame, while the curvature defined about the 
binormal b is projected into two axes jt and kt that differ from 
the normal and binormal used in the Serret-Frenet frame. 

In general, for any local material frame, by the virtue of the 
orthogonality of the transformation matrix [ ]=A i j k  
that defines the orientation of this frame (ATA=I), one always 
has 

T

s=κ A A#                 (31) 

where κ#  is a skew-symmetric matrix associated with the 
vector 1 2 3[ ]Tκ κ κ=κ , where 

1 sκ = ⋅k j ,    2 sκ = − ⋅k i ,    3 sκ = ⋅j i        (32) 
In these equations, subscript s indicates differentiation with 
respect to the arc-length parameter s. Note that the definition of 
the torsion and curvatures associated with the tangent and 
cross-section frames are different. Using the assumption that 
the longitudinal axis of the cross-section frame does not 
significantly differ from the tangent to the beam centerline, 1κ  
in the preceding equation can be assumed to represent the 
torsion. One, however, must ensure that the definition of 
torsion is correctly interpreted when the cross-section frame is 
used, particularly in the case of large deformation problems. 
Local Strain Definitions     The position vector gradients 
along y and z directions of the cross-section are projected on a 
local coordinate system attached to the material points as 
follows: 

,y T z T

y z= =r A r r A r         (33) 
where the matrix A can be the transformation matrix that 
defines the cross-section or the tangent frame. Using the 
preceding equation, the matrix of position vector gradients of 
Eq. 6 can be written as 

c p p y z

x x x= + +  J r A r Ar Ar Ar       (34)  

where pr  is the local position vector of an arbitrary point on 
the beam cross-section defined in the local material reference 
frame: 

p y zy z= +r r r               (35) 
Using chain rule of differentiation, the gradients along the 
spatial x coordinate in Eq. 34 can be expressed in terms of 
gradients defined by the differentiation with respect to the arc-
length as 

( )p P

x s s xs= + +r t A r Ar           (36)  

where /xs ds dx=  and t is the unit tangent to the beam 
4 Copyright © 2005 by ASME 
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centerline given by /cd ds=t r . This tangent does not 
necessarily coincides with the vector i in the case of the cross-
section frame due to the shear deformation. Using Eqs. 34-36 
and utilizing the identities T =A A I  and 1T =t t , Green-
Lagrange strain components defined in the local material frame 
can then be written as follows: 

( )( )

( )

( )

( ) ( )

211

12

13

22 33

23

ε ε ε

ε
2

ε
2
1 1

ε 1 , ε 1 ,
2 2
1

ε
2

l p p qx

s x

y y z y px
s

z z y z px
s

y y z z

y z

s

s
z

s
y

= + ⋅ + ⋅ +

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ − = ⋅ −

= ⋅

t κ r t r

t r r κ r r r

t r r κ r r r

r r r r

r r

#

#

#     (37)  

where 
2 2

2
ε

2
l ds dx

dx

−
=  is the nonlinear longitudinal strain,  κ#  

is the curvature-torsion matrix defined by Eq. 31, T=t A t  
and εqx  contains the higher order strain components. It is 
important to note from the strain components defined by Eq. 
37 that the deformations of the cross-section due to the change 
in the gradients along y and z contribute to all the six strain 
components defined in the element coordinate system. In some 
applications in which the effect of deformations of the cross-
section is small such as in the case of the cable problems, these 
deformation modes can introduce undesirable high frequency 
oscillations that lead to numerical difficulties when the system 
equations of motion are solved. 
Special Case  In applications where the effect of deformations 
of the cross-section is negligible, a special case of the general 
strain formulation presented in this section can be considered in 
order to avoid the high frequency oscillations. In the special 
case discussed in the reminder of this section, the beam cross-
section is assumed to remain planar and rigid. In such a case, 
the strain components defined by Eq. 37 can then be reduced 
to the following expressions: 

( )( )( )211

2 3 1

12 13

1 1

22 33 23

ε ε

1 1
ε , ε

2 2 2 2

ε 0, ε 0, ε 0

l

x

c cx x
x x

z y y z s

s s
z y

κ κ κ

κ κ

= + ⋅ − ⋅ + ⋅ −

= ⋅ − = ⋅ +

= = =

t i t i t k j

r j r k   (38)  

where the fact that c

x xs =t r  is utilized. In such a special case, 
the local displacement gradient vectors associated with the 
beam cross-section are always constant and given by 

* *[0 1 0] , [0 0 1]y T z T= =r r       (39)  
Using the preceding equation, it is clear that the 

orthogonality condition 0y z⋅ =r r  is also satisfied. As a 
result, the gradients along the y and z axes can be, respectively, 
defined by the vectors j and k of the local material frame as can 
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be shown by Eq. 33. In Eq. 38, the first term of 11ε  defines 
the nonlinear strain associated with the elongation along the 
beam centerline, the second and third terms define the 
contribution of the in-plane and out-of-plane bending to the 
axial strain, and the fourth and fifth terms define the 
contribution of the torsion due to the change in the orientation 
of the cross-section expressed by ⋅t j  and ⋅t k . If the cross-
section remains perpendicular to the beam arc-length, these 
shear effects are identically zero. Furthermore, the shear strain 
components, 12ε  and 13ε , consist of strains due to the change 
in the orientation of the cross-section defined by 1

2
c

x ⋅r j  and 
1
2

c

x ⋅r k  and the torsional strain 1κ . 

6  REISSNER AND EULER-BERNOULLI BEAM MODELS 
In this section, it is shown how the Reissner and Euler-

Bernoulli finite element beam models can be obtained from the 
more general theory presented in the preceding section. Since 
the existing beam models assume planar cross-section, Eq. 38 
is used as the starting point for the strain definitions developed 
in this section. It is important, however, to point out that many 
of the assumptions used in the models presented in this section 
can be relaxed when general absolute nodal coordinate models 
are used. Furthermore, it is shown in this section, how the 
number of nodal coordinates used in the absolute nodal 
coordinate formulation can be consistently reduced by 
developing a set of algebraic constraint equations that can be 
used to eliminate some of the modes of deformation of the 
cross-section of the finite element. 
Reissner�s Beam Model     It can be demonstrated that the 
strain definitions given by Eq. 38 leads to the Reissner�s 
nonlinear beam model [15] that was first used by Simo and Vu-
Quoc for geometrically exact finite element beam models [9-11] 
when the following simplifying assumptions are made:  

1. The longitudinal stretch is assumed to be small such 
that the first order strain can be used as 

( )ε l c

x⋅ −i r i" . 
2. In addition to Assumption 1, the contribution of the 

longitudinal stretch to the rotation strains is small such 
that ds dx" , that is 1xs = . 

3. The contribution of the shear deformation due to the 
change in the orientation of the cross-section to the 
bending and torsion is small. As a result, it can be 
assumed that 1Tt i " , 0⋅t j "  and 0⋅t k "  in the 
definition of the longitudinal strain. 

Using the preceding assumptions, the nonlinear strains given by 
Eq. 38 can be simplified, leading to the following strain 
expressions used in many geometrically exact finite element 
beam models [9-11]: 

( )

( ) ( )

11

3 2

12 13

1 1

22 33 23

ε

1 1
ε , ε

2 2

ε 0, ε 0, ε 0

c

x

c c

x x

y z

z y

κ κ

κ κ

= ⋅ − − +

= ⋅ − = ⋅ +

= = =

i r i

r j r k    (40)  

Note that using Assumption 2 that approximates ds as ds dx"  
in the terms associated with the rotation strain components, the 
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local curvature-torsion matrix is approximated by T

xκ A A# " . 
As discussed in the introduction of the paper, the rotation 
matrix A in the absolute nodal coordinate formulation is 
defined by the gradients of the global displacement field given 
by Eq. 14 or 15, while most of existing geometrically exact 
finite element beam formulations define the orientation of the 
cross-section using the independent interpolation of the rotation 
parameters. This interpolation of the rotation field leads to 
numerical problems such as the energy drift and violation of the 
principle of work and energy. 

The preceding assumptions used to obtain Reissner�s beam 
model imply that the beam cross-section remains planar, but the 
cross-section does not necessarily remain perpendicular to the 
beam centerline. As a result, the condition given by Eq. 39 is 
imposed in order to eliminate the strain components associated 
with the deformation of the cross-section. In such a case, the 
following conditions can be used:  

1

1
y y

z z

y z

⋅ −

= ⋅ − =

⋅

 
 
 
  

r r

C r r 0

r r

             (41) 

where the preceding three scalar equations guarantee that 
22 33 23ε ε ε 0= = =  and eliminate the modes of deformation of 

the cross-section, as discussed in Sections 5. Recall that the 
general motion of an infinitesimal volume can be described 
using twelve independent parameters: three translational 
parameters; three rotational parameters to describe the 
reference orientation of the volume; and six parameters that 
define six strain components. As a consequence, three of the six 
strain components associated with the deformation of the cross-
section can be eliminated using Eq. 41. 
Euler-Bernoulli Beam Model     When the assumptions of 
Euler-Bernoulli Beam theory are used, the vector i is always 
tangent to the space curve that defines the centerline of the 
beam. For this reason, the vector tangent to the beam centerline, 

c

xr , is perpendicular to the vectors j and k, leading to the 
following definitions deduced from the strain components 
given by Eq. 40: 

( )11

3 2

12 13

1 1

22 33 23

ε

1 1
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2 2

ε 0, ε 0, ε 0

c

x y z

z y

κ κ

κ κ

= ⋅ − − +

= − =

= = =

i r i

      (42)  

In such a case, the shear strain components 1
2

c

x ⋅r j  and 
1
2

c

x ⋅r k  are equal to zero in order for c

xr  to remain normal to 
the cross section of the beam, leading to the Euler-Bernoulli 
strain measure. As a result, an Euler-Bernoulli beam element 
can be obtained in the absolute nodal coordinate formulation 
using the following two additional conditions imposed on the 
displacement of a material point within an element: 

�

�

c

y x

c

z x

⋅
= =

⋅

 
 
 

r r
C 0

r r
              (43) 

Note that the gradient vectors ry and rz are, respectively, equal 
to jo and ko under the conditions given by Eq. 41 and Eq. 43 
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guarantees that shear strain components at the material point 
given by Eq. 40 are equals to zero; that is 

1
0

2
c o

x ⋅ =r j ,      
1

0
2

c o

x ⋅ =r k           (44)  

As a result, the virtual work of the elastic forces can be simply 
written as 

1 1 2 2 3 30
( ε ε )l l

xx yy zzW EA GI EI EI dxδ δ κ δκ κ δκ κ δκ= + + +∫
!

 

 (45)  
where E is Young�s modulus, A is cross-section area, G is the 
modulus of rigidity, Ixx is polar moment of area, and Iyy and Izz 
are second moments of area. The strain components are defined 
in this case by 

( )1
ε 1

2
l c c

x x= ⋅ −r r , 1
o

xκ = ⋅k j , 2
o c

xxκ − ⋅k r" , 3
o c

xxκ ⋅j r"  

(46)  
where the one-dimensional Green strain instead of the first 
order approximation used in Eq. 42 is employed for the 
longitudinal stretch. Furthermore, if the constraint condition of 
Eq. 41 is satisfied, o

y=j r  and o

z=k r , leading to the 
simpler definition of the elastic forces. 

7  NUMERICAL EXAMPLE 
In this section, numerical examples are presented in order 

to demonstrate the use of different strain definitions that also 
lead to the use of different numbers of independent nodal 
coordinates of the finite element. In order to demonstrate the 
effect of the cross-section deformation modes, the constraint 
formulation is used to impose the Euler-Bernoulli beam 
assumptions as discussed in Sections 6. Furthermore, a lower 
order beam element based on the absolute nodal coordinate 
formulation which is a special case of the formulation presented 
in [7] is used for the purpose of comparison. In the case of the 
higher order element, for simplicity, the constraint equations 
used for Euler-Bernoulli beam assumptions are imposed at the 
nodal points only. That is, Eqs. 41 and 43 hold only at the 
nodal points. A similar, but conceptually different procedure is 
used in the literature [16] for an orthonormality condition of 
direction cosine coordinates. In the following examples, three 
different finite element models are used: the first model (Model 
I) uses the higher order 24 nodal coordinate element as 
originally presented in the literature [1]; the second model 
(Model II) imposes the Euler-Bernoulli beam assumptions to 
Model I in order to consistently eliminate deformation modes 
of the cross-section as discussed in this investigation; and the 
third model (Model III) is a reduced order beam element 
obtained using six nodal coordinates at each node; three 
translations and the gradient vector along the x coordinate as 
presented in the literature [7]. 

A cantilever beam presented in the literature [17,18] is 
considered in this example. The length, height and width of the 
beam are assumed to be 2.4 m, 9 mm and 0.2 m, respectively. 
Young�s modulus is assumed to be 1.0E+6 N/m2, while the 
material density is 2770 kg/m3. A concentrated vertical force is 
applied at the free end as follows [17]: 
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         (47) 

where F0 = 0.09 N. Figure 2 shows the deformed shapes of the 
cantilever beam obtained using 32 elements of Model I and II. 
In Figure 3, the vertical tip displacements at time 3 s and 15 s 
are presented for different number of finite elements. The 
results presented in this figure shows that all the Models lead to 
the convergent solution as the number of elements increases. 
However, for this thin beam problem, the rate of convergence 
in the case of Model II and III is better than that of Model I. As 
discussed in Section 4 for the particular beam element used in 
this study, the bending strains can be defined in Model I using 
the derivatives of ry and rz that are approximated by linear 
polynomials when Green-Lagrange strains (see Eq. 8) or the 
first order strains (see Eq. 23) are used. On the other hand, the 
curvature expression given by Eq. 46 used in Model II and III 
are defined using the derivatives of rc approximated by cubic 
polynomials. As a result, Models II and III lead to better 
convergence for the bending strains and their solutions are in 
good agreement since both models employ the same strain 
expressions and simplifying assumptions, despite the fact that 
the two models use different numbers of nodal coordinates and 
different numerical solution procedures. In terms of 
efficiencies, since Models II leads to better convergence for the 
bending strains than those of Model I in the thin beam problem, 
CPU time of Model II is approximately 11 times faster than that 
of Model I in this specific problem. Furthermore, if one further 
reduces the thickness of the beam and increases the stiffness, 
the difference in CPU time becomes more significant.  

In the second example, the height of the cross-section is 
increased to 0.4 m in order to discuss the effect of the 
deformation of the cross-section. The external force is also 
increased to F0=180 N. Figure 4 shows the norm of the gradient 
along z at the middle point used to define the stretch of the 
cross-section. As can be seen from these figures, the 
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    Fig. 2  Deformed shapes of the large deformation  
           cantilever beam problem 
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deformation of the cross-section in this problem may not be 
neglected and Model I must be used for such a problem. Note 
also that, in the case of plasticity problems, since the material 
deformation is defined in a deviatoric stress/strain space, 
deformation of the cross-section described by ry and rz are used 
in the absolute nodal coordinate formulation and these position 
vector gradients are not neglected in such a problem [19]. 

8  SUMMARY AND CONCLUSIONS 
The deformation modes for a three-dimensional beam 

element obtained using the finite element absolute nodal 
coordinate formulation is discussed in this paper. Using the 
deformation modes discussed in this investigation, a procedure 
for eliminating modes of deformation of the finite element is 
presented. The coordinate reduction procedure presented in this 
paper requires introducing local frames such as the tangent 
frame and the cross section frames. The strain components can 
be defined in these local frames, leading to strain definitions 
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that can be used to obtain, by imposing appropriate 
assumptions, the simpler models such as the Reissner and 
Euler-Bernoulli beam models. The assumptions used to define 
these models lead to the definition of the algebraic constraint 
equations that can be used to define a set of dependent 
coordinates eliminated, thereby reducing the degrees of 
freedom of the finite element. This coordinate reduction 
procedure ensures the continuity of the gradients at the nodal 
points and also leads to the definition of a unique displacement 
field. Numerical examples are presented in order to 
demonstrate the use of the beam model obtained using Euler-
Bernoulli beam assumptions and these results are compared 
with those obtained using more general models in the absolute 
nodal coordinate formulation. Lower order finite elements 
based on the absolute nodal coordinate formulation have been 
also proposed in the literature [5-7]. These elements, as used in 
the analysis of thin beam and plate structures without the need 
for imposing algebraic constraint equations to eliminate high 
frequency cross-section modes of deformation. 
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