30 research outputs found

    Setting Up the Speech Production Network: How Oscillations Contribute to Lateralized Information Routing

    Get PDF
    Speech production involves widely distributed brain regions. This MEG study focuses on the spectro-temporal dynamics that contribute to the setup of this network. In 21 participants performing a cue-target reading paradigm, we analyzed local oscillations during preparation for overt and covert reading in the time-frequency domain and localized sources using beamforming. Network dynamics were studied by comparing different dynamic causal models of beta phase coupling in and between hemispheres. While a broadband low frequency effect was found for any task preparation in bilateral prefrontal cortices, preparation for overt speech production was specifically associated with left-lateralized alpha and beta suppression in temporal cortices and beta suppression in motor-related brain regions. Beta phase coupling in the entire speech production network was modulated by anticipation of overt reading. We propose that the processes underlying the setup of the speech production network connect relevant brain regions by means of beta synchronization and prepare the network for left-lateralized information routing by suppression of inhibitory alpha and beta oscillations

    Low-Frequency Oscillations Code Speech during Verbal Working Memory

    Get PDF
    Item does not contain fulltextThe way the human brain represents speech in memory is still unknown. An obvious characteristic of speech is its evolvement over time. During speech processing, neural oscillations are modulated by the temporal properties of the acoustic speech signal, but also acquired knowledge on the temporal structure of language influences speech perception-related brain activity. This suggests that speech could be represented in the temporal domain, a form of representation that the brain also uses to encode autobiographic memories. Empirical evidence for such a memory code is lacking. We investigated the nature of speech memory representations using direct cortical recordings in the left perisylvian cortex during delayed sentence reproduction in female and male patients undergoing awake tumor surgery. Our results reveal that the brain endogenously represents speech in the temporal domain. Temporal pattern similarity analyses revealed that the phase of frontotemporal low-frequency oscillations, primarily in the beta range, represents sentence identity in working memory. The positive relationship between beta power during working memory and task performance suggests that working memory representations benefit from increased phase separation.SIGNIFICANCE STATEMENT Memory is an endogenous source of information based on experience. While neural oscillations encode autobiographic memories in the temporal domain, little is known on their contribution to memory representations of human speech. Our electrocortical recordings in participants who maintain sentences in memory identify the phase of left frontotemporal beta oscillations as the most prominent information carrier of sentence identity. These observations provide evidence for a theoretical model on speech memory representations and explain why interfering with beta oscillations in the left inferior frontal cortex diminishes verbal working memory capacity. The lack of sentence identity coding at the syllabic rate suggests that sentences are represented in memory in a more abstract form compared with speech coding during speech perception and production

    Cognitive Impairment in Multiple Sclerosis Is Reflected by Increased Susceptibility to the Sound-Induced Flash Illusion

    Get PDF
    Objective: To determine whether the performance of multiple sclerosis (MS) patients in the sound-induced flash illusion (SiFi), a multisensory perceptual illusion, would reflect their cognitive impairment.Methods: We performed the SiFi task as well as an extensive neuropsychological testing in 95 subjects [39 patients with relapse-remitting MS (RRMS), 16 subjects with progressive multiple sclerosis (PMS) and 40 healthy control subjects (HC)].Results: MS patients reported more frequently the multisensory SiFi than HC. In contrast, there were no group differences in the control conditions. Essentially, patients with progressive type of MS continued to perceive the illusion at stimulus onset asynchronies (SOA) that were more than three times longer than the SOA at which the illusion was already disrupted for healthy controls. Furthermore, MS patients' degree of cognitive impairment measured with a broad neuropsychological battery encompassing tests for memory, attention, executive functions, and fluency was predicted by their performance in the SiFi task for the longest SOA of 500 ms.Conclusions: These findings support the notion that MS patients exhibit an altered multisensory perception in the SiFi task and that their susceptibility to the perceptual illusion is negatively correlated with their neuropsychological test performance. Since MS lesions affect white matter tracts and cortical regions which seem to be involved in the transfer and processing of both crossmodal and cognitive information, this might be one possible explanation for our findings. SiFi might be considered as a brief, non-expensive, language- and education-independent screening test for cognitive deficits in MS patients

    Galanin pathogenic mutations in temporal lobe epilepsy

    Get PDF
    Temporal lobe epilepsy (TLE) is a common epilepsy syndrome with a complex etiology. Despite evidence for the participation of genetic factors, the genetic basis of TLE remains largely unknown. A role for the galanin neuropeptide in the regulation of epileptic seizures has been established in animal models more than two decades ago. However, until now there was no report of pathogenic mutations in GAL, the galanin-encoding gene, and therefore its role in human epilepsy was not established. Here, we studied a family with a pair of monozygotic twins affected by TLE and two unaffected siblings born to healthy parents. Exome sequencing revealed that both twins carried a novel de novo mutation (p.A39E) in the GAL gene. Functional analysis revealed that the p.A39E mutant showed antagonistic activity against galanin receptor 1 (GalR1)-mediated response, and decreased binding affinity and reduced agonist properties for GalR2. These findings suggest that the p.A39E mutant could impair galanin signaling in the hippocampus, leading to increased glutamatergic excitation and ultimately to TLE. In a cohort of 582 cases, we did not observe any pathogenic mutations indicating that mutations in GAL are a rare cause of TLE. The identification of a novel de novo mutation in a biologically-relevant candidate gene, coupled with functional evidence that the mutant protein disrupts galanin signaling, strongly supports GAL as the causal gene for the TLE in this family. Given the availability of galanin agonists which inhibit seizures, our findings could potentially have direct implications for the development of anti-epileptic treatmen

    A proposal for a patient-oriented five-dimensional approach for surveillance and therapy in multiple sclerosis

    No full text
    The former and current multiple sclerosis (MS) classifications are essential for describing different phenotypes and disease dynamics. To establish personalized treatment regimes, further clinical and paraclinical parameters have to be considered such as imaging, cerebrospinal fluid (CSF) findings, past disease-modifying therapies (DMTs), and disease activity under these therapies. In clinical practice, this information is often difficult to overview. Especially, patients with a long course of disease offer an extensive medical history so that comprehending all of the necessary information can be very time consuming

    Patients with chronic autoimmune demyelinating polyneuropathies exhibit cognitive deficits which might be associated with CSF evidence of blood-brain barrier disturbance.

    No full text
    BACKGROUND:Chronic autoimmune demyelinating polyneuropathies (CADP) result in impaired sensorimotor function. However, anecdotal clinical observations suggest the development of cognitive deficits during the course of disease. METHODS:We tested 16 patients with CADP (11 patients with chronic inflammatory demyelinating polyneuropathy, 4 patients with multifocal motor neuropathy and 1 patient with multifocal acquired demyelinating sensory and motor neuropathy) and 40 healthy controls (HC) with a neuropsychological test battery. Blood-brain-barrier dysfunction (BBBd) in patients was assessed retrospectively by analysing the cerebral spinal fluid (CSF) status at the time the diagnosis of CAPD was established. RESULTS:CADP patients failed on average in 1.7 out of 9 neuropsychological tests (SD ± 1.25, min. 0, max. 5). 50% of the CADP patients failed in at least two neuropsychological tests and 44.3% of the patients failed in at least two different cognitive domains. CADP patients exhibiting BBBd at the time of first diagnosis failed in more neuropsychological tests than patients with intact integrity of the BBB (p < 0.05). When compared directly with the HC group, CADP patients performed worse than HC in tests measuring information processing ability and speed as well as phonemic verbal fluency after adjusting for confounding covariates. CONCLUSIONS:Our results suggest that mild to moderate cognitive deficits might be present in patients with CAPD. One possible tentative explanation, albeit strong evidence is still lacking for this pathophysiological mechanism, refers to the effect of autoimmune antibodies entering the CNS via the dysfunctional blood-brain barrier typically seen in some of the CADP patients

    Visual search in naturalistic scenes reveals impaired cognitive processing speed in multiple sclerosis

    No full text
    Background: Standardized neuropsychological testing serves to quantify cognitive impairment in multiple sclerosis (MS) patients. However, the exact mechanism underlying the translation of cognitive dysfunction into difficulties in everyday tasks has remained unclear. To answer this question, we tested if MS patients with intact vs. impaired information processing speed measured by the Symbol Digit Modalities Test (SDMT) differ in their visual search behavior during ecologically valid tasks reflecting everyday activities. Methods: Forty-three patients with relapsing-remitting MS enrolled in an eye-tracking experiment consisting of a visual search task with naturalistic images. Patients were grouped into “impaired” and “unimpaired” according to their SDMT performance. Reaction time, accuracy and eye-tracking parameters were measured. Results: The groups did not differ regarding age, gender, and visual acuity. Patients with impaired SDMT (cut-off SDMT-z-score < −1.5) performance needed more time to find and fixate the target (q = 0.006). They spent less time fixating the target (q = 0.042). Impaired patients had slower reaction times and were less accurate (both q = 0.0495) even after controlling for patients' upper extremity function. Exploratory analysis revealed that unimpaired patients had higher accuracy than impaired patients particularly when the announced target was in unexpected location (p = 0.037). Correlational analysis suggested that SDMT performance is inversely linked to the time to first fixation of the target only if the announced target was in its expected location (r = −0.498, p = 0.003 vs. r = −0.212, p = 0.229). Conclusion: Dysfunctional visual search behavior may be one of the mechanisms translating cognitive deficits into difficulties in everyday tasks in MS patients. Our results suggest that cognitively impaired patients search their visual environment less efficiently and this is particularly evident when top-down processes have to be employed
    corecore