9 research outputs found

    Additional file 1: of Phosphorylation of different tau sites during progression of Alzheimer’s disease

    No full text
    Online Source 9 Double labeling of pSer262 and pSer202/Thr205 tau in the temporal cortex at Braak stage V/VI. Images show different labeling pattern of pSer262 (arrows) and pS202 (white arrowheads) as well as their overlay (yellow arrowheads) (a1) and single fluorescence images (a2,3,4) of case 17. AF: autofluorescence. Scale bar: 20 μm. Online Source 10 Example of measurement procedure of tau pSer262. Objects in the unlabeled autofluorescence channel were detected by thresholding (red in a1). The resulting mask images (a2) were then subtracted from tau pSer262 images to remove autofluorescence (a3). The resulting images were Edge+ filtered (a4) to facilitate threshold-based detection of tau pSer262-positive objects (red outline in a5). These outlines were then loaded onto the raw images to quantify original tau pSer262 signal (red outline in a6). AF: autofluorescence. Scale bar: 20 μm. Online Source 11 Example of detecting ThioS-positive amyloid-β but not NFTs. Image a displays the co-labeling of ThioS (green) and HT7 (red), while images b and c, respectively, show single channel images. ThioS shows intense labeling of plaque-associated β-sheets (b, asterisk) whereas tangles are only weakly labeled (c, arrows) (c). A combination of threshold-based identification of ThioS and size restriction (d‘, green rectangle) enables quantification of ThioS+ plaque labeling (red highlighted) but not tangles (d). ThioS: ThioflavinS. Scale bar: 20 μm. (PDF 599 kb

    Data for synaptic proteins expression levels and pathological scores in prefrontal cortex, anterior cingulate gyrus and parietal cortex

    No full text
    <p>Dataset1: The dataset includes the values of Dynamin1 and phospho-/total CaMKII measured in the prefrontal cortex, used for the statistic analysis. The first three columns report the semi-quantitative scoring of AD and Lewy Body pathology in this brain region.</p> <p>Dataset2: The dataset includes the values of Dynamin1 and phospho-/total CaMKII measured in the anterior cingulated gyrus, used for the statistic analysis. The first three columns report the semi-quantitative scoring of AD and Lewy Body pathology in this brain region.</p> <p>Dataset3: The dataset includes the values of Dynamin1 and phospho-/total CaMKII measured in the parietal cortex, used for the statistic analysis. The first three columns report the semi-quantitative scoring of AD and Lewy Body pathology in this brain region.</p

    Additional file 1 of Interpretable deep learning of myelin histopathology in age-related cognitive impairment

    No full text
    Additional file 1: Figure S1 Annotation procedure of blue hue ranges in Luxol fast blue, hematoxylin, and eosin-stained tiles. Representative tiles show the annotation method used for positive pixel counting in the Luxol fast blue, hematoxylin, and eosin (LH&E) stained histology tiles. For the annotation heatmap, the darker blue pixel range is highlighted as red while the lighter blue pixel range is highlighted as light blue. Figure S2 Correlation of slide-level probability estimates of cognitive impairment in matched brain donors between the two brain regions. Scatter plots showing the probability estimates of cognitive impairment by the top-performing models in the same brain donors between WSIs in the hippocampus and frontal cortex data sets. The blue line shows predictions from a linear model and grey error envelopes show 95% confidence intervals for the linear model. Figure S3 Scatterplot matrix of deep histopathology features with clinicopathologic features in the frontal cortex. Correlation analysis of deep histopathology results and clinicopathologic features: age, Braak score, ARTAG positivity in the hippocampus (coded as 0 = not present and 1 = present), cognitive label (coded as 0 = not cognitively impaired and 1 = cognitively impaired), probability of cognitive impairment as predicted by the top-performing model trained on the frontal cortex data, and median LFB staining intensity (pixel counts) in the top attention tiles in the frontal cortex data set. Upper right: rank correlation values and associated p-values (* = p < 0.05, ** = p < 0.01, *** = p < 0.001). Diagonal: histograms of variables. Lower left: Scatterplots with linear model trend lines for the variable pairs (red lines) and 95% confidence intervals (blue envelopes). This plot was made using the R package GGally (v. 2.1.2). CI = Cognitive impairment; ARTAG = Aging-related tau astrogliopathy; LFB = Luxol Fast Blue

    Are consumption of dairy products and physical activity independently related to bone mineral density of 6-year-old children? Longitudinal and cross-sectional analyses in a birth cohort from Brazil

    Get PDF
    Objective: To evaluate cross-sectional and longitudinal associations of consumption of dairy products and physical activity (PA) with bone mineral density (BMD). Design: Cohort study with children from the 2004 Pelotas (Brazil) Birth Cohort. Setting: Pelotas, a medium-sized Brazilian city. Subjects: The study started in 2004 and mothers/children were interviewed/measured periodically from birth to age 6 years. PA was measured by maternal proxy at 4 and 6 years and by accelerometry at 6 years. Consumption of dairy products was measured using 24 h food recall (at 4 years) and FFQ (at 6 years). Total-body and lumbar-spine BMD (g/cm2) were measured by dual-energy X-ray absorptiometry. Results: At 6 years, BMD was measured in 3444 children and 2636 children provided data on objectively measured PA by accelerometry. Consumption of dairy products at 4 years was associated with higher lumbar-spine BMD at 6 years in boys, while current consumption was positively associated with BMD in both sexes (P < 0·001). PA assessed by maternal report at 4 and 6 years of age was associated with higher BMD at 6 years in boys. PA assessed by accelerometry was positively related to total-body and lumbar-spine BMD in boys and lumbar-spine BMD in girls. We did not find evidence for an interaction between PA and consumption of dairy products on BMD. Conclusions: We observed positive and independent longitudinal and cross-sectional associations between consumption of dairy products and PA with BMD in the total body and at the lumbar spine in young children
    corecore