21,299 research outputs found

    Lepton-number violation and right-handed neutrinos in Higgs-less effective theories

    Full text link
    Following previous work, we identify a symmetry S_nat that generalizes the concept of custodial symmetry, keeping under control deviations from the Standard Model (SM). To realize S_nat linearly, the space of gauge fields has to be extended. Covariant constraints formulated in terms of spurions reduce S_nat back to SU(2)_L x U(1)_Y. This allows for a covariant introduction of explicit S_nat-breaking parameters. We assume that S_nat is at play in a theory of electroweak symmetry-breaking without a light Higgs particle. We describe some consequences of this assumption, using a non-decoupling effective theory in which the loop expansion procedure is based on both momentum and spurion power counting, as in Chiral Perturbation Theory. A hierarchy of lepton-number violating effects follows. Leading corrections to the SM are non-oblique. The effective theory includes stable light right-handed neutrinos, with an unbroken Z_2 symmetry forbidding neutrino Dirac masses. nu_R contribution to dark matter places bounds on their masses.Comment: Corresponds to published version: added subsection VI-D about order-of-magnitude estimate

    Strong-coupling scales and the graph structure of multi-gravity theories

    Get PDF
    In this paper we consider how the strong-coupling scale, or perturbative cutoff, in a multi-gravity theory depends upon the presence and structure of interactions between the different fields. This can elegantly be rephrased in terms of the size and structure of the `theory graph' which depicts the interactions in a given theory. We show that the question can be answered in terms of the properties of various graph-theoretical matrices, affording an efficient way to estimate and place bounds on the strong-coupling scale of a given theory. In light of this we also consider the problem of relating a given theory graph to a discretised higher dimensional theory, a la dimensional deconstruction.Comment: 23 pages, 7 figures; v2: additional references included, and minor typos corrected; version published in JHE

    The decoupling limit of Multi-Gravity: Multi-Galileons, Dualities and More

    Get PDF
    In this paper we investigate the decoupling limit of a particular class of multi-gravity theories, i.e. of theories of interacting spin-2 fields. We explicitly compute the interactions of helicity-0 modes in this limit, showing that they take on the form of multi-Galileons and dual forms. In the process we extend the recently discovered Galileon dualities, deriving a set of new multi-Galileon dualities. These are also intrinsically connected to healthy, but higher-derivative, multi-scalar field theories akin to `beyond Horndeski' models.Comment: 41 pages, 2 figure

    Alat Uji Baterai 12V 60AH Secara Elektronis

    Full text link
    This research discusses the implementation of electronic circuits for battery testing to replace the manual tester that is usually used in Switchyard. The equipment consists of constant-current controlled circuit to produce relatively constant current according to battery capacity so that it is able to be used as a battery tester based on a charge-and-discharge method with constant current. PC based data acquisition is used in order to have data that are more accurate. Experimental results in testing 12 V, 60 AH battery demonstrates the ability of the equipment to replace the manual one as a battery tester

    How SU(2)4_4 Anyons are Z3_3 Parafermions

    Get PDF
    We consider the braid group representation which describes the non-abelian braiding statistics of the spin 1/2 particle world lines of an SU(2)4_4 Chern-Simons theory. Up to an abelian phase, this is the same as the non-Abelian statistics of the elementary quasiparticles of the k=4k=4 Read-Rezayi quantum Hall state. We show that these braiding statistics are identical to those of Z3_3 Parafermions

    Effect of Dynamical Coulomb Correlations on the Fermi Surface of Na_0.3CoO_2

    Get PDF
    The t2g quasi-particle spectra of Na_0.3CoO_2 are calculated within the dynamical mean field theory. It is shown that as a result of dynamical Coulomb correlations charge is transfered from the nearly filled e_g' subbands to the a_1g band, thereby reducing orbital polarization among Co t2g states. Dynamical correlations therefore stabilize the small e_g' Fermi surface pockets, in contrast to angle-resolved photoemission data, which do not reveal these pockets.Comment: 4 pages, to appear in PR

    Tip aerodynamics from wind tunnel test of semi-span wing

    Get PDF
    Presented are the results of a low-speed wind tunnel test on a 5.33-aspect-ratio, semi-span wing with 30- and 35 deg swept tapered tips. The test results include aerodynamic data for the tip itself and for the entire wing including the tip. The metric tip extended inboard 1.58 wing chord lengths. The aerodynamic drag data show the strong influence of tip incidence angle on tip drag for various lift levels. Pitching-moment characteristics show the effect of a moment center at 0.13 c and 0.25 c

    Effects of a radially varying electrical conductivity on 3D numerical dynamos

    Full text link
    The transition from liquid metal to silicate rock in the cores of the terrestrial planets is likely to be accompanied by a gradient in the composition of the outer core liquid. The electrical conductivity of a volatile enriched liquid alloy can be substantially lower than a light-element-depleted fluid found close to the inner core boundary. In this paper, we investigate the effect of radially variable electrical conductivity on planetary dynamo action using an electrical conductivity that decreases exponentially as a function of radius. We find that numerical solutions with continuous, radially outward decreasing electrical conductivity profiles result in strongly modified flow and magnetic field dynamics, compared to solutions with homogeneous electrical conductivity. The force balances at the top of the simulated fluid determine the overall character of the flow. The relationship between Coriolis and Lorentz forces near the outer boundary controls the flow and magnetic field intensity and morphology of the system. Our results imply that a low conductivity layer near the top of Mercury's liquid outer core is consistent with its weak magnetic field.Comment: 30 pages, 11 figures, 2 tables. To be published in Physics of Earth and Planetary Interiors (PEPI)
    • …
    corecore