8 research outputs found

    Network reconstruction for trans acting genetic loci using multi-omics data and prior information

    Get PDF
    BACKGROUND: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks underlying trans-QTL hotspots using human cohort data and data-driven prior information. METHODS: We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior information to guide network inference was manually curated from large-scale biological databases. The inference approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing methods were subsequently applied to real-world human cohort data. RESULTS: Our benchmarks showed that prior-based strategies outperform methods without prior information in simulated data and show better replication across datasets. Application of our approach to human cohort data highlighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel functional hypotheses. CONCLUSIONS: We demonstrate that existing biological knowledge can improve the integrative analysis of networks underlying trans associations and generate novel hypotheses about regulatory mechanisms

    Vascular tissue specific mirna profiles reveal novel correlations with risk factors in coronary artery disease

    Get PDF
    Funding Information: Acknowledgments: We wish to thank all individuals donating cardiovascular relevant tissue and data. We would like to thank the surgeons of the Department of Cardiovascular Surgery and the KaBi-DHM (Cardiovascular Biobank of the German Heart Center) for collecting the surgical specimens. We further wish to thank the German Centre for Cardiovascular Research (DZHK) for financial support, the technical assistance team (Nicole Beck, Ulrike Weiß and Susanne Blachut) for wet lab and sequencing support. M.v.S. reported support by the Clinician Scientist Excellence Program of the DZHK, the German Society of Cardiology (DGK), the German Heart Foundation (Deutsche Herzstiftung e.V.), the Fondation Leducq (PlaqOmics) and the Corona Foundation (Junior Research Group Cardiovascular Diseases). Further, support was provided within the framework of DigiMed Bayern (www.digimed-bayern.de) funded by the Bavarian State Ministry of Health and Care and the Bavarian State Ministry of Science and the Arts through the DHM-MSRM Joint Research Center. Figures were prepared based on a BioRender’s Academic License using BioRender https://biorender.com/. Funding Information: Funding: Supported by the German Centre for Cardiovascular Research (DZHK), grant number 81X2100144 and by the BMBF (German Ministry of Education and Research). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Non-coding RNAs have already been linked to CVD development and progression. While microR-NAs (miRs) have been well studied in blood samples, there is little data on tissue-specific miRs in cardiovascular relevant tissues and their relation to cardiovascular risk factors. Tissue-specific miRs derived from Arteria mammaria interna (IMA) from 192 coronary artery disease (CAD) patients undergoing coronary artery bypass grafting (CABG) were analyzed. The aims of the study were 1) to establish a reference atlas which can be utilized for identification of novel diagnostic biomarkers and potential therapeutic targets, and 2) to relate these miRs to cardiovascular risk factors. Overall, 393 individual miRs showed sufficient expression levels and passed quality control for further analysis. We identified 17 miRs–miR-10b-3p, miR-10-5p, miR-17-3p, miR-21-5p, miR-151a-5p, miR-181a-5p, miR-185-5p, miR-194-5p, miR-199a-3p, miR-199b-3p, miR-212-3p, miR-363-3p, miR-548d-5p, miR-744-5p, miR-3117-3p, miR-5683 and miR-5701–significantly correlated with cardiovascular risk factors (correlation coefficient >0.2 in both directions, p-value (p < 0.006, false discovery rate (FDR) <0.05). Of particular interest, miR-5701 was positively correlated with hypertension, hypercholesterolemia, and diabetes. In addition, we found that miR-629-5p and miR-98-5p were significantly correlated with acute myocardial infarction. We provide a first atlas of miR profiles in IMA samples from CAD patients. In perspective, these miRs might play an important role in improved risk assessment, mechanistic disease understanding and local therapy of CAD.Peer reviewe

    Use of big data from health insurance for assessment of cardiovascular outcomes

    Get PDF
    Outcome research that supports guideline recommendations for primary and secondary preventions largely depends on the data obtained from clinical trials or selected hospital populations. The exponentially growing amount of real-world medical data could enable fundamental improvements in cardiovascular disease (CVD) prediction, prevention, and care. In this review we summarize how data from health insurance claims (HIC) may improve our understanding of current health provision and identify challenges of patient care by implementing the perspective of patients (providing data and contributing to society), physicians (identifying at-risk patients, optimizing diagnosis and therapy), health insurers (preventive education and economic aspects), and policy makers (data-driven legislation). HIC data has the potential to inform relevant aspects of the healthcare systems. Although HIC data inherit limitations, large sample sizes and long-term follow-up provides enormous predictive power. Herein, we highlight the benefits and limitations of HIC data and provide examples from the cardiovascular field, i.e. how HIC data is supporting healthcare, focusing on the demographical and epidemiological differences, pharmacotherapy, healthcare utilization, cost-effectiveness and outcomes of different treatments. As an outlook we discuss the potential of using HIC-based big data and modern artificial intelligence (AI) algorithms to guide patient education and care, which could lead to the development of a learning healthcare system and support a medically relevant legislation in the future

    Crowdsourced analysis of clinical trial data to predict amyotrophic lateral sclerosis progression

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with substantial heterogeneity in its clinical presentation. This makes diagnosis and effective treatment difficult, so better tools for estimating disease progression are needed. Here, we report results from the DREAM-Phil Bowen ALS Prediction Prize4Life challenge. In this crowdsourcing competition, competitors developed algorithms for the prediction of disease progression of 1,822 ALS patients from standardized, anonymized phase 2/3 clinical trials. The two best algorithms outperformed a method designed by the challenge organizers as well as predictions by ALS clinicians. We estimate that using both winning algorithms in future trial designs could reduce the required number of patients by at least 20%. The DREAM-Phil Bowen ALS Prediction Prize4Life challenge also identified several potential nonstandard predictors of disease progression including uric acid, creatinine and surprisingly, blood pressure, shedding light on ALS pathobiology. This analysis reveals the potential of a crowdsourcing competition that uses clinical trial data for accelerating ALS research and development
    corecore