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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative 
disease with substantial heterogeneity in its clinical 
presentation. This makes diagnosis and effective treatment 
difficult, so better tools for estimating disease progression are 
needed. Here, we report results from the DREAM-Phil Bowen 
ALS Prediction Prize4Life challenge. In this crowdsourcing 
competition, competitors developed algorithms for the prediction 
of disease progression of 1,822 ALS patients from standardized, 
anonymized phase 2/3 clinical trials. The two best algorithms 
outperformed a method designed by the challenge organizers 
as well as predictions by ALS clinicians. We estimate that using 
both winning algorithms in future trial designs could reduce 
the required number of patients by at least 20%. The DREAM-
Phil Bowen ALS Prediction Prize4Life challenge also identified 
several potential nonstandard predictors of disease progression 
including uric acid, creatinine and surprisingly, blood pressure, 
shedding light on ALS pathobiology. This analysis reveals the 
potential of a crowdsourcing competition that uses clinical trial 
data for accelerating ALS research and development.

ALS, also known as Lou Gehrig’s disease, is a progressive neuro-
degenerative disorder affecting upper and lower motor neurons. 
Symptoms include muscle weakness, paralysis and eventually death, 
usually within 3 to 5 years from disease onset. Approximately 1 out 
of 400 people will be diagnosed with, and die of ALS1,2, and modern 
medicine is faced with a major challenge in finding an effective treat-
ment2,3. Riluzole (Rilutek) is the only approved medication for ALS, 
and has a limited effect on survival4.

One substantial obstacle to understanding and developing an  
effective treatment for ALS is the heterogeneity of the disease course, 
ranging from under a year to over10 years. The more heterogeneous 
the disease, the more difficult it is to predict how a given patient’s 
disease will progress and thereby to demonstrate the effect of a poten-
tial therapy, making clinical trials especially challenging. In addition, 
the uncertainty surrounding prognosis is an enormous burden for 
patients and their families. A more accurate way to anticipate disease 
progression, as measured by a clinical scale (ALS Functional Rating 
Scale: ALSFRS5, or the revised version, ALSFRS-R6), can therefore 
lead to meaningful improvements in clinical practice and clinical trial 
management, and increase the likelihood of seeing a future treatment 
brought to market7,8.

In an effort to address the important issue of variability of ALS 
disease progression, we took advantage of two tools: a large data set of 
clinical, longitudinal, patient information and the vast knowledge and 
new computational approaches obtainable through crowdsourcing.

Pooled clinical trial data sets have proven invaluable for research-
ers seeking to unravel complex diseases such as multiple sclerosis, 
Alzheimer’s and others9–12. With that in mind, Prize4Life and the 
Neurological Clinical Research Institute (NCRI) at Massachusetts 
General Hospital created the Pooled Resource Open-Access ALS 
Clinical Trials (PRO-ACT, www.ALSdatabase.org/) platform with 
funding from the ALS Therapy Alliance and in partnership with the 
Northeast ALS Consortium. The vision of the PRO-ACT project was 
to accelerate and enhance translational ALS research by designing and 
building a data set that would contain the merged data from as many 
completed ALS clinical trials as possible. Containing >8,600 patients, 
PRO-ACT was launched as an open access platform for researchers 
in December 2012.

We turned to crowdsourcing13 to facilitate an unbiased assess-
ment of the performance of diverse methods for prediction and to 
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raise awareness of the research potential of this new data resource. 
To address the question of the variability in the progression of ALS, 
a subset of the PRO-ACT data was used before its public launch 
for an international crowdsourcing initiative, The DREAM-Phil 
Bowen ALS Prediction Prize4Life. The prize for the challenge was 
$50,000 to be awarded for the most accurate methods to predict ALS  
progression. The challenge was developed and run through a collabo-
ration between the Dialogue for Reverse Engineering Assessments and 
Methods (DREAM) initiative and Prize4Life using the InnoCentive 
Platform. In this challenge, solvers were asked to use 3 months of  
individual patient level clinical trial information to predict that 
patient’s disease progression over the subsequent 9 months.

The challenge resulted in the submission of 37 unique algorithms 
from which two winning entries were identified. Overall, the best-
performing algorithms predicted disease progression better than both 
a baseline model and clinicians using the same data. Clinical trial 
modeling indicates that using the algorithms should enable a substan-
tial reduction in the size of a clinical trial required to demonstrate a 
drug effect. Finally, the challenge uncovered several clinical meas-
urements formerly unknown to be predictive of disease progression, 
which may shed new light on the biology of ALS.

RESULTS
Challenge design and participation statistics
As part of the 7th DREAM initiative, the DREAM-Phil Bowen ALS 
Prediction Prize4Life (referred to henceforth as the ALS Prediction 
Prize) solicited computational approaches for the assessment of 
the progression of ALS patients using clinical trial data from the 
PRO-ACT data set (Online Methods and Supplementary Note 1).  
The challenge offered a $50,000 award for the most reliable and pre-
dictive solutions.

Solvers were asked to use 3 months of ALS clinical trial informa-
tion (months 0–3) to predict the future progression of the disease 
(months 3–12). The progression of the disease was assessed by the 
slope of change in ALSFRS (a functional scale that ranges between  
0 and 40). The solvers were given 12 months of longitudinal data for 
the development and training of algorithms, and were asked to submit 
their algorithm to be evaluated on a separate data set not available for 
the development or training of the algorithms.

For evaluation, algorithms were run by InnoCentive on the 
InnoCentive servers. Algorithms were fed data from the first 3 months 
of a given patient’s participation in a clinical trial. Data from the  
subsequent 9 months were not supplied. The performance results 
against a test data set were presented on a leaderboard. Finally, par-
ticipants were assessed on a third, fully blinded and previously unseen 
validation set to prevent overfitting. The prize was awarded according 
to performance on this validation set (Fig. 1).

The challenge lasted 3 months, from July 13 to October 15, 2012.  
It drew 1,073 registrants from >60 countries. Following the chal-
lenge, a survey of registrants was conducted. The survey revealed 
a diverse audience comprising academic (58%) and industry (30%) 
professionals as well as others (12%). Notably, 80% of the solvers 
had almost no familiarity with ALS. No fewer than 93% expressed 
interest in participating in a future challenge (comprehensive survey 
results appear in the Supplementary Note 2 and Supplementary 
Tables 1 and 2). However, as is typical for crowdsourcing chal-
lenges, only a small fraction of the registrants submitted an  
algorithm for testing. During the challenge a total of 37 teams submit-
ted an algorithm to be tested through the leaderboard and 10 teams 
made valid final submissions. In order to be valid, the submitted R14 
code was required to be executable within InnoCentive’s system and 
to predict ALSFRS slopes for all given patients.

Method performance and assessment
We evaluated and compared the ten final submissions provided by 
the solvers, as well as an eleventh method designed by the challenge 
organizers. The latter method is referred to as the baseline method, as 
it was used to establish the baseline performance that best-performing  
teams would need to outperform. The solvers’ methods and the baseline 
algorithm are described in Supplementary Note 3, Supplementary 
Figure 1 and Supplementary Tables 2–8; the full sets of predictions 
are provided in Supplementary Predictions. As a separate archive 
(Supplementary Software), we provide the source code of six teams 
that may be used in compliance with the algorithms’ own copyright 
statements. Method performance was assessed by root mean square 
deviation (r.m.s. deviation) and Pearson’s correlation (PC) to compare 
predictions of the ALSFRS slope against the actual slope derived from 
the data. Although the r.m.s. deviation can be directly interpreted as 
estimation error in units of ALSFRS, PC is useful to assess the correct 
prediction of trends. For visual inspection of the performance see 
Supplementary Results 1 and Supplementary Figures 2 and 3.

Solver teams and their methods were assessed based on their r.m.s. 
deviation scores on the separate validation data set (Fig. 2), which 
was crucial to guarantee robustness (for differences between valida-
tion and leaderboard performance, see Supplementary Results 2, 
Supplementary Figs. 4–8 and Supplementary Table 9). The top six 
teams (ranked at positions 1–6) exhibited an r.m.s. deviation lower 
than the baseline method. The ten solvers used a variety of meth-
odological approaches, but it is interesting to observe that four out 
of the six top-ranking teams employed variants of the random forest 
machine learning approach. Two other approaches that ranked at 
position 1 and 6 were based on Bayesian trees and nonparametric 
regression, respectively. Simple regression methods (ranks 8 to 10) 
performed substantially worse than the baseline method. Method 7 is 
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Figure 1 Challenge outline. (a) The data for 
the challenge comprised 1,822 patients from 
ALS clinical trials from the PRO-ACT data set. 
Data types included demographics, clinical and 
family history information, laboratory tests and 
vital signs. (b) We divided the data into three 
subsets: training data provided to solvers in 
full, leaderboard and validation data reserved 
for the scoring of the challenge. Leaderboard 
and validation data were only available to 
the challenge managers for the testing of the 
algorithms submitted by the solvers. Algorithms were fed with data from the first 3 months to perform predictions, and evaluated based on the subsequent  
9 months of data. (c) At the end of the challenge, solvers submitted their algorithms to be tested by the challenge organizers on the validation data set.  
(d) The predictions obtained in c were then assessed by the judges for accuracy.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature biotechnology   VOLUME 33 NUMBER 1 JANUARY 2015 53

A n A ly s i s

Figure 2 Performance of methods. (a,b) We 
compared the approaches of the ten teams 
that submitted executable R code in the final 
phase of the challenge and a baseline approach 
designed by the challenge organizers. All the 
solvers’ algorithms had to be compatible with 
R version 2.13.1. The teams are numbered 
according to their ranking in r.m.s. deviation 
performance (a) or Pearson Correlation (b). 
They are colored blue if they performed better 
than, and gray if they performed worse than, 
the baseline. In addition, an aggregate of 
the predictions of teams 1 and 2 is shown. 
Whiskers indicate bootstrapped s.d. (inset). The 
frequency with which methods were ranked first 
is estimated across different bootstrap samples 
of patients. Teams 1 and 2 were ranked first in 71% and 26%, respectively, of the bootstrap samples (percentage rounded to the nearest integer). (d) By 
simulation, we estimated to what extent clinical trials can be reduced in size by each of the participating approaches corresponding to their improved 
prediction of disease progression.

a naive predictor that calculates the average slope of the training set 
patients and predicts the value of this slope for any further patients. 
We will refer to the resulting deviation as base r.m.s. deviation because 
it provides a good estimate for the difficulty of prediction of a given 
patient set, thus achieving a PC of 0. Except for this method, the 
performance rankings determined using r.m.s. deviation and those 
determined using PC were quite consistent.

In addition, we employed bootstrapping to assess the robustness of 
performance (Online Methods). Here, we evaluated the probability 
that a given method would achieve the best overall performance on 
different subsets of patients. Teams 1 and 2 achieved the best r.m.s. 
deviation in 71% and 26%, respectively, of the patient samples gen-
erated by bootstrapping (Fig. 2b). We thus concluded that the algo-
rithms of these two teams provide both the most robust and the most 
reliable predictions. Therefore, teams 1 and 2 were declared the best 
performers of the challenge and received an award of $20,000 each. 
Team 3 (ref. 15) won a third place prize of $10,000. As in previous 
installments of the DREAM challenges16, the aggregation of pre-
dictions across teams 1 and 2 further reduced the prediction error. 
Bootstrapping further allowed us to estimate that a statistically signifi-
cant improvement over the baseline algorithm would correspond to 
an r.m.s. deviation of 0.5, which was not achieved by any method.

The two top-performing methods as well as the baseline algorithm 
were then applied to predict the disease progression of patients in 
the full PRO-ACT data set. The algorithms maintained their  
ability to predict disease progression reliably (r.m.s. deviations: 
team 1, 0.544; team 2, 0.559; baseline, 0.559; Supplementary  
Results 3 and Supplementary Figs. 9 and 10). That performance 
was slightly lower than during the challenge can be explained by the 
greater variability in data across a larger number of trials, which also 
increased the base r.m.s. deviation from 0.566 to 0.610.

Besides the selection of an appropriate predictive approach, per-
formance was also influenced by the processing of the clinical mea-
surements. Static features (those with one value per patient, e.g., gender 
or age) could be exploited as is. In contrast, the remaining features 
were ‘time-resolved’ and could not, therefore, be incorporated directly 
into standard machine learning frameworks because time points and 
number of measurements varied between patients. Generally, teams 
converted each type of time-resolved data per patient into a constant 
number of static features by applying various statistics. For instance, 
linear regression was applied to represent a set of measurements by the 
slope and intercept (e.g., baseline method). Another approach was to 
select designated measurements as features, such as the minimum and 
maximum of the values. The latter approach was successfully applied 
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Figure 3 Prediction and classification by algorithms and clinicians. (a) ALSFRS slopes were partitioned into 14 clusters of commonly occurring disease 
progression profiles via k-means. Clusters predominantly contain slow (black), average (gray) or fast patients (red). Patients closest to the center of 
each cluster were selected to yield 14 representative patients. (b) Performance of 12 clinicians (red, “A” indicates the performance of their aggregated 
predictions) and two algorithms (blue) is assessed based on r.m.s. deviation (ordinate) and Pearson’s correlation (abscissa). Here, r.m.s. deviation 
and correlation are calculated based on the 14 representative patients. (c,d) The slope predictions (abscissa) as generated by algorithm 1 (c) and the 
median clinician regarding r.m.s. deviation (d). Individual patients were classified as slow (−), medium (o) or fast (+) according to the true progression 
(ordinate). The predicted classifications were assessed relative to a threshold (dashed line). Patients left or right of the threshold are assumed to be 
predicted fast or slow, respectively. Circles highlight incorrectly classified patients (d).
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by the best-performing team 1. Notably, this min/max approach rep-
resented the time-resolved data in a more robust way than the linear 
regression approach, which apparently suffered from the relatively 
few data points available. The treatment of features was also what 
distinguished the four methods based on random forest variants, that 
is, they used specific approaches for feature selection, missing value 
imputation or feature summary statistics.

To be useful clinically, algorithms should be able to maintain 
predictability with limited data that have either (i) fewer features  
(ii) or cover less than 3 months. Therefore, we tested the effects 
of (i) by using only the five most-predictive features and (ii) by  
limiting the time period of information available to the algorithms to 
the first month of data. For both the best-performing algorithm and 
the baseline methods, performance did not substantially deteriorate 
(Supplementary Results 3 and Supplementary Figs. 9 and 10).

Predictions facilitate reduction in clinical trial size
ALS clinical trials serve to evaluate the effect of a given drug treatment 
on disease progression, with ALSFRS and ALSFRS-R scores serving as 
common outcome measures. The great variability in ALS disease progres-
sion hinders the ability to detect effects of a given treatment, necessitating  
larger and more costly clinical trials. The ability to more accurately 
predict the expected disease progression for a given patient (without 
treatment intervention) can therefore reduce the number of patients 
needed by increasing the ability to detect a drug’s effect on disease (less 
obscured by the inherent disease variability). To quantify the potential 
trial size reduction engendered by use of the algorithms, we simulated 
trials (Online Methods). We estimated that trial size could be reduced by 
up to 20.4% using the aggregated predictions of teams 1 and 2 (Fig. 2d).  
As the average cost per patient in an ALS clinical trial is $30,000  
(L.A. White and D. Kerr, personal communication), for a phase 3, 1,000-
patient trial, this would translate into a $6-million reduction in cost.

Comparison between algorithms and clinicians
ALS prognostic prediction is challenging. Clinicians often feel  
they lack the necessary tools to provide their patients with accurate 
prognostic information. Thus, we aimed to evaluate whether the  
ALS prediction algorithms could help clinicians by comparing their 
predictive performance.

Therefore, we selected a relatively small but representative subset 
of patients. Using k-means clustering, we divided the 1,822 patients 

into 14 clusters, reflecting commonly occurring ALSFRS time courses. 
Clusters were distinguished by both their intersect (ALSFRS score 
at time 0) and the shape of their progression curves (Fig. 3a). Based  
on these 14 distinct, disease-progression patterns, we selected 14  
representative patients, that is, the centroid of each cluster.

Subsequently, 12 clinicians from top ALS clinics from seven coun-
tries were asked to estimate the future disease progression of these 
representative patients (Supplementary Results 4, Supplementary 
Fig. 11, Supplementary Table 10 and Supplementary Data 1), 
using the exact same data provided to the algorithms. The two best-
performing algorithms substantially outperformed all clinician  
predictions, indicated by both higher PC and lower r.m.s. deviation 
(Fig. 3b). In addition, the algorithms also outperformed the aggregate 
of all the clinicians’ predictions. The rate of progression predicted 
by the best-performing algorithm (team 1’s)—in contrast to the rate 
predicted by the clinicians—and the actual rate of disease progres-
sion across the 14 cases, were well-correlated (Fig. 3c). These results 
suggest that the prediction algorithms might prove useful in helping 
clinicians to assess patient disease progression.

In addition to an algorithm’s predictive accuracy, it is crucial that it 
provides a broad assessment of patient progression, that is, that it can 
correctly classify a given patient as having an average disease progres-
sion, or having an unusually slow or fast disease course. Therefore, 
we analyzed both the algorithm- and clinician-based predictions to 
determine to what extent slow and fast progressors were correctly 
classified. Three patients showing an ALSFRS slope of less than  
−1.1 points/month were considered fast, seven patients with a slope 
greater than −0.5 points/month were considered slow, and the remain-
ing four patients were considered average.

On this limited subset of patients, the best algorithm (team 1’s) 
discriminated perfectly between slow and fast-progressing patients 
(Fig. 3c,d). In contrast, the rate of progression predicted by a typical 
clinician showed substantially less correlation to the true rate and 
many patients were misclassified. On average, clinicians misclassified 
35% of the patient cases (Supplementary Results 4, Supplementary 
Fig. 11 and Supplementary Table 10).

Predictive features
To assess the importance of each feature for the different algorithms, 
we looked at the predictive features as they were ranked by the top six 
best-performing algorithms. We focused on the features that at least 
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two solvers included within the top 30 predictive features. Sixteen 
such features were identified (Fig. 4a). The list includes several fea-
tures previously reported to predict ALS progression, including time 
from onset, age, forced vital capacity (FVC), site of onset, gender, 
weight17–20, as well as uric acid concentration in blood, a feature 
that has only been suggested recently as a predictor20. In addition,  
the challenge was successful in identifying nonstandard predictive 
features, opening the door to new insights into ALS disease mecha-
nisms. These were pulse, blood pressure as well as the concentration 
of creatine kinase, creatinine and phosphorus.

We further assessed these features by determining the correlation, 
over time, between the relevant feature and the ALSFRS score, for 
each subject (Fig. 4b–d). Notably, for creatinine the distribution of 
correlations across the patients was skewed toward higher correla-
tions, indicating a subset of patients that exhibit an unusually high 
correlation between changes in creatinine and ALSFRS score. This was 
also found, to a lesser extent, for creatine kinase, which is correlated 
with creatinine. This suggests that these features may be especially 
predictive for specific subgroups of patients and therefore might be 
useful biomarkers of the disease. A similar trend was not found for 
pulse, phosphorus or blood pressure (Supplementary Results 5 and 
Supplementary Figs. 12 and 13), for which further detailed analysis, 
beyond the scope of this study, is needed to explore their potential 
predictive properties.

DISCUSSION
The current lack of robust approaches for estimating the future 
disease progression of ALS patients represents a major obstacle for 
the testing of novel therapeutic approaches in clinical trials and the 
understanding of disease mechanisms. As ALS is a rapidly progressing 
disease, the accurate estimation of progression is very important for 
patient care and making decisions regarding clinical interventions 
and assistive technology.

The unique global challenge presented here brought together the 
efforts of 37 participating teams to develop tools to predict disease 
progression in a way useful to ALS clinical trials and clinicians, and 
to identify new predictive features that can provide new insights into 
disease processes and could provide important biomarkers.

The PRO-ACT platform, the largest existing ALS clinical trial data set, 
has provided an unprecedented opportunity to increase our understanding 
of the ALS patient population and the natural history of the disease21.

The crowdsourcing approach had several advantages. First, the 
challenge attracted new minds and new perspectives to a problem 
largely unknown outside the ALS research community22. Second, the 
format of the challenge allowed blinded side-by-side comparisons of 
different prediction methods, tested on a data set the solvers never saw 
and to which the algorithms had never been exposed. This allowed a 
better assessment of the robustness of the solutions.

Notably, the algorithms could be divided into two groups based on 
their performance, with teams using tree-based ensemble regression 
techniques, such as random forest or Bayesian additive regression, 
almost always outperforming teams using simple regression. These 
results suggest that tree-based ensemble regression techniques are 
likely suitable for clinical data in general, beyond the scope of ALS 
and are therefore of broad general importance for analysis of clinical 
trial information in the context of clinical trials as well as clinical 
health records. In addition, robust processing of the time-resolved 
clinical measurements seemed to be the key to achieving the overall 
most-predictive results, where simple summary statistics performed 
best. This may be due to the limited number of time points available 
and the intrinsic noise, issues prevalent in medical data.

By simulation, we estimated that predictions by the winning algo-
rithms could lead to a 20% reduction in population size for an ALS 
clinical trial. This reduction stems from changes in trial design. When 
planning clinical trials, variability between the patients is estimated to 
plan for a sufficient trial size to capture the effect of the drug beyond 
that variability. An algorithm that gives more information about the 
patients, and thereby reduces the interpatient variability, can facilitate 
a reduction in trial size. Furthermore, a reduction of the estimated 
magnitude could also affect the number of medical sites required 
by a trial, leading to further cost savings. Prognostic methods could 
also lead to improvements in trial effectiveness, so assessing the 
financial implications of incorporating predictive algorithms into 
clinical trial design is not straightforward. If we limit the effect of 
a more quantitative understanding of disease heterogeneity only to 
calculating the number of patients needed, we estimate that predic-
tions enable a 20% reduction in population size of a phase 3 trial, 
resulting in a $6-million dollar reduction in costs. These financial 
benefits need to be weighed against the potential costs of providing  
a lead-in period where patients are tracked before the start of the trial 
to determine their expected progression and other factors that affect 
the trial, such as patient drop-out or limited survival. The finding 
that the algorithms maintain their predictability using just 1 month 
of information (Supplementary Results 3), and the fact that the  
performance of the algorithms remained robust when tested on  
the larger and more diverse full PRO-ACT data set demonstrates the 
power of crowdsourcing, where a challenge with a monetary award 
of $50,000 can potentially reduce the costs of multiple future clini-
cal trials by millions of dollars. The algorithms are currently being  
further tested and validated on proprietary ALS trial data. 
Furthermore, efforts are underway to transform the algorithms into 
a ready-to-use software tool for evaluation and future application in 
clinics and in clinical trials.

To further assess the ability of the winning algorithms to help 
clinicians in accurately determining the prognosis of their patients, 
we directly compared the algorithms’ predictions with the estimates 
of 12 leading ALS clinicians. For all 14 patient cases examined, the 
algorithms outperformed all of the clinicians and the aggregate of 
the clinicians by a substantial margin. Clearly, predicting disease 
prognosis based solely on an anonymized data set in the absence 
of a clinical encounter certainly cannot truly reflect the wealth of 
information that can be gleaned by an experienced clinician through 
clinical observation. However, these results demonstrate how a pre-
dictive algorithm could prove helpful to clinicians when advising 
patients. As the patient population participating in clinical trials is not  
fully representative of the patient population seen in the clinic23, steps 
are being taken to directly test the utility of these algorithms in a 
clinical setting.

Another important goal of the ALS Prediction Prize challenge 
was to validate features that had previously been suggested to be 
predictive in small studies and to identify novel predictive features. 
Overall, 15 different features were identified by more than one solver. 
Several were features reported in the literature17,18,24–33, including 
age, site of disease onset, gender, the slope of disease progression so 
far, past ALSFRS slope, and past FVC slope, thus serving as valida-
tion of both the features and the algorithms. Unfortunately for many 
of the patients in PRO-ACT, FVC information was not available or 
other key features required to calculate FVC were missing. Weight, 
which has been disputed as a predictor in the ALS literature19,34,35, 
was found to be predictive. Specific ALSFRS questions were found 
to be predictive by the different teams, but with no consensus over 
certain questions being more predictive of the total score than others. 
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Notably, the challenge also validates the predictive value of uric acid20. 
Higher than average uric acid concentrations have also been shown 
to correlate with slower progression in Parkinson’s disease, dementia 
and Huntington’s disease36–39, suggesting a common pathological 
mechanism or by-product across neurodegenerative processes, and 
clinical trials based on increasing uric acid have already been initiated 
for several central nervous system–related conditions. The fact that 
the algorithms still identified uric acid as a predictor supports past 
findings20. Similarly, the challenge was able to support the predic-
tive power of creatinine40,41, which was not only identified by several 
different algorithms, but was also found to be highly correlated with 
the changes in ALSFRS as the disease progresses over time. Further 
features of interest include creatine kinase, whose levels highly cor-
relate with creatinine levels, suggested to be predictive of prognosis 
in ALS42,43. Pulse and blood pressure, which at first glance may be 
surprising predictive features for ALS, are supported by a body of 
literature suggesting sympathetic dysfunction in ALS44–47. Further 
research and studies are needed to assess the potential of these fea-
tures and elucidate their involvement in ALS pathophysiology.

In summary, the ALS prediction prize brought new minds to the 
field of ALS and demonstrated the benefits of crowdsourcing in fos-
tering new approaches in ALS research. The best-performing algo-
rithms in this challenge have the potential to reduce the population 
size needed to measure a drug effect by 20% and have enabled the 
identification of several nonstandard, potential predictive features 
that might shed new light on disease pathways. Lastly, the algorithms 
could aid clinicians in their judgment during evaluation of the patients 
and thereby improve the care of ALS patients. The algorithms are now 
being tested in clinical settings.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
General setup. The goal of the challenge was to predict disease progression 
in ALS. Participants were tasked to use the first 3 months of clinical informa-
tion (months 0–3 from the beginning of the trial), to predict the change in 
ALSFRS over months 3 to 12 (with no overlap between the two time periods). 
ALSFRS drops by one point per month in average patients. We chose to focus 
on ALSFRS because it is a common primary outcome measure in ALS clinical 
trials, and a measure that reflects a variety of the patient’s everyday function. 
Other important factors, such as patient survival, were not chosen because 
survival is a point measure and reflects parameters beyond disease progression  
(such as the patient’s decision regarding tracheotomy and gastrostomy, and 
the patient’s background diseases).

Part of the clinical data was time-resolved (such as ALSFRS, functional vital 
capacity, vital signs and laboratory tests) and part was static (such as gender, 
demographics and family history of ALS). The challenge used a subset of the 
PRO-ACT data set comprising 1,822 patients, derived from four clinical tri-
als, completed in the past 15 years. ALSFRS was shown to be independent of 
the effective date of trials48. All of the subject records used in the challenge 
included 12 months of completed assessment and contained either ALSFRS or 
ALSFRS-R scores. Atassi et al. calculated basic statistics for the database49.

The data records were subdivided into a training (n = 918), a test (n = 279) 
and a validation set (n = 625 unique patient records). For the development 
and training of computational approaches, solvers received full access to the 
training data set (challenge phase 1). So that the performance of the solvers’ 
algorithms on the test and validation sets could be assessed, teams had to 
submit R14 code to the challenge manager, who then ran the code on the data 
set, consisting of only 3 months of information. During the course of the chal-
lenge, at their discretion, solvers could upload their algorithms to be evaluated 
by InnoCentive blindly and automatically on the test data and the results were 
shown on a leaderboard (challenge phase 2). Although the performance on the  
test set had no influence on the ultimate determination of best performer, 
the leaderboard served to provide important feedback to the solvers. During  
the last phase of the challenge (challenge phase 3), the test set was provided  
to the solvers. They then had to submit their final code, which was again 
assessed blindly and automatically against the never-before-seen set of subject 
records comprising the separate validation set.

Assessment. Computing the actual slopes. The goal of the challenge was to pre-
dict the expected decline of the value of the ALSFRS (slope) during months 3  
to 12. ALSFRS is a score composed of ten questions, each contributing a value 
between 0 and 4. For patients where only ALSFRS-R (12 questions) was avail-
able, we discarded two questions not contained in ALSFRS. This was done to 
simplify the prediction task, although it may remove some information. See 
Supplementary Note 1 for more details. Subsequently, we removed ALSFRS 
and ALSFRS-R values for measurements where not all 10 required questions 
were available, resulting in a final scale ranging from 0 to 40.

To select subjects eligible for prediction, we removed all subject records 
with fewer than two visits during the first 3 months. To determine the slope, 
we assigned the first visit after month three of participation in the clinical trial 
as m1. If there were visits through month 12, we assigned the first such visit 
after month 12 as m2. Otherwise, if there were only visits through the eleventh 
month we use the final visit as m2. If there was no such visit, the subject was 
removed from consideration. The slope is then calculated as 

slope ALSFRS m ALSFRS m
m m

= −
−

( ) ( )2 1
2 1  

Performance assessment. Two ALSFRS values were available for each patient, 
namely si from the actual slope and pi from slope prediction. To assess the pre-
diction performance, the sets of computed slopes S and predicted slopes P were 
compared across patients using the r.m.s. deviation as well as the Pearson’s 
correlation. The r.m.s. deviation measures absolute deviations between N cor-
responding slope pairs so that smaller values correspond to a smaller predic-
tion error by 

RMSD
N

s pi i
i

N
= −

=
∑1 2

1
| |

 

In contrast, Pearson’s correlation ρ is a relative measure that evaluates how well 
a prediction method is able to recover ALSFRS trends across patients. Better 
predictions lead to a higher value of the correlation, up to 1.0 for the perfect 
prediction. It is calculated by 

r
s sS P
S P

S P
,

( , )= cov

 
where cov is the covariance of S and P and σS and σP are the s.d. of  
S and P, respectively.

Aggregation of predictions. Given a variety of different predictive methods, 
aggregation aims to combine their divergent predictions resulting in a sin-
gle prediction that is often more accurate than any of the underlying indi-
vidual ones. Here, we aggregated predictions across teams participating in 
the challenge. For a given patient, each prediction contributes an estimate of 
the future ALSFRS slope. The aggregate ALSFRS slope for that patient is then 
calculated as the average of the ALSFRS values predicted by the algorithms 
to be aggregated.

Bootstrapping. In the course of this challenge, a single set of predictions was 
obtained from each participating team, so that the application of one of the 
above-mentioned scoring schemes results in a single performance estimate 
per team. In order to approximate the empirical performance distribution 
for each team, and thus to obtain the expected variance of the performance, 
we applied bootstrapping. For each team-specific bootstrap, 100 bootstrap 
samples were generated by sampling (from the validation set, n = 625 patients) 
with replacement, so that some patients appear several times as prediction tar-
gets whereas others might be omitted. Subsequently, the performance scoring 
metric r.m.s. deviation was calculated for each of the bootstrap samples to esti-
mate the bootstrapped average µ and s.d. σ. Thereby, we described improve-
ments over the baseline approach base in units of the z-score. We regard the  
r.m.s. deviationthresh at a z-score of z = 2 (corresponding to a P-value of 0.02) 
as a significant improvement in performance. 

RMSD zthresh base base= −m s

Clustering and selection of representative patients. We aimed to select a 
small number of between 10 and 20 representative patients to facilitate the 
manual estimation of disease progression by clinicians. Therefore, we par-
titioned the ALS profiles of patients by performing k-means clustering 100 
times using k = 25, the Euclidian distance metric and randomly placed initial 
centroids. Out of the 100 k-means runs, the one with the smallest average 
distance of patients to the centroids was selected and clusters with less than 
ten members were discarded. One patient was selected from each cluster that 
was closest to the cluster centroid. K-means was applied to a matrix C of 1,822 
patients by 20 months, so that the element ci,j contains the ALSFRS value of 
patient i at month j. As the time points of obtaining the ALSFRS values did 
not match across patients, we linearly interpolated the ALSFRS values at the 
beginning of each month for the construction of C.

Classification of patients. To assess the usefulness of a prediction algorithm, it 
should be able to correctly classify patients with unusually slow or fast disease 
courses. Using the following approach we compared the computed slopes to 
those predicted by algorithms or clinicians to assess their performance regard-
ing patient classification. In a first step, we defined patients with computed 
ALSFRS slopes of less than −1.1 ALSFRS points/months as fast and greater 
than −0.5 ALSFRS points/months as slow. Patients in between these extremes 
were defined as average. In step two, we calculated the median predicted slopes 
of the average patients. Patients with an ALSFRS of less than or more than 
this median slope were assumed to be classified as fast or slow, respectively. 
Subsequently, we obtained the number of classification errors, that is, slow 
patients misclassified as fast, or fast patients misclassified as slow.

Heatmap of feature correlations. The ranking of the features were provided 
by the submitting solvers. Only features found by at least two solvers to be 
in the top 30 of the most predictive features were further analyzed. Different 
processing variants of the time-resolved features (e.g., average, slope) were 
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grouped together. To assess the general importance of difference features, the 
rankings were averaged across solvers.

Calculation of relative values. The various clinical measurements obtained 
during trials exhibit markedly different ranges and units. We normalize the 
different measures to a common scale so that several of them can be shown in 
a single diagram. The normalized measures are referred to as relative values. 
A measure is normalized by subtracting its Quartile Q1 and dividing by the 
difference of the quartiles Q3-Q1 to obtain relative values. Thereby, the middle 
50% of the measurements of each feature are scaled to a common range.

Estimation of the clinical trial size reduction. Two important parameters 
may decide whether the effectiveness of a drug treatment can be demonstrated, 
(i) the number of patients included in a clinical trial and (ii) the accuracy of 
the estimated disease progression in comparison to the disease progression 
observed under drug treatment. A reduced trial size leads to an increased 
variance in treatment effect quantification and thereby reduces the statisti-
cal power of tests employed for demonstrating drug effectiveness. Here, we 
determined the particular trial size reduction such that the resulting increased 
variance was compensated by the reduced variance stemming from the predic-
tions of the future disease progression. Thus, the required size of clinical trials 
can be reduced in proportion to the accuracy of these predictions.

For this purpose, we simulated clinical trials for each method, first using the 
method’s slope predictions as covariates in the data analysis and ignoring the 
predictions in a second simulation. The simulation was performed by fitting 
linear random effects models, routinely used to describe treatment effects on 
the progression of the ALSFRS slope in most current clinical trials. The setting 
of the simulation was a placebo-controlled trial where the treatment, which 
has unknown clinical effects, was compared to the placebo arm.

The model was parameterized for the time interval between 3 and  
12 months, thus modeling the future disease progression after a 3 month 
lead-in period as assumed during the competition. Suppose slopei was the 
slope prediction from the model and treatmenti was a variable which is zero 
for the control group and one for the treatment group. We then modeled the 
ALSFRS value aij determined for patient i during a clinical examination at 
time point j by 

a b time time treatment

slope time
ij i ij ij i

i

= + +

+ +

( ) * ( * )

* (

b b

b b
1 2

3 4 iij i i ijslope intercept e* )+ +
 

with the coefficients β1…β4, weighting the terms corresponding to the  
average slope, the treatment effect, the part of the intercept dependent on 
the slope, as well as the estimated future disease progression, respectively, as 
well as the random effect of β1, bi, which was included to reduce the overall 
error eij. We also estimated the same model except that we removed all the 
terms containing slopei. Let s1 be the standard error of the treatment effect 
β2 in the model with slopei and s2 be the standard error of β2 without it.  
Then the percent reduction in sample size is proportional to the reduction 
in variance given by 

100 1 1 2
2*( ( / ) )− s s

 
Treatment codes were simulated at random. Due to the large number 
of patients in the sample, different choices of treatment codes had a  
negligible effect.

Ethics statement. In all of the trials included in the PRO-ACT data set,  
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