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Abstract 

Background:  Molecular measurements of the genome, the transcriptome, and the epigenome, often termed 
multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights 
in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them 
to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave 
footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and 
use of biological prior information can improve network inference. However, previous efforts were limited in the types 
of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks 
underlying trans-QTL hotspots using human cohort data and data-driven prior information.

Methods:  We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-
the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior 
information to guide network inference was manually curated from large-scale biological databases. The inference 
approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing 
methods were subsequently applied to real-world human cohort data.

Results:  Our benchmarks showed that prior-based strategies outperform methods without prior information in 
simulated data and show better replication across datasets. Application of our approach to human cohort data high‑
lighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel 
functional hypotheses.

Conclusions:  We demonstrate that existing biological knowledge can improve the integrative analysis of networks 
underlying trans associations and generate novel hypotheses about regulatory mechanisms.

Keywords:  Systems biology, Multi-omics, Data integration, Network inference, Prior information, Simulation, Machine 
learning, Personalized medicine
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Background
Genome-wide associations studies (GWAS) have been 
tremendously successful in discovering disease asso-
ciated genetic loci. However, establishing causality or 
obtaining functional explanations for GWAS SNPs is still 
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challenging. In recent years, the focus has shifted from 
discovery of disease loci to mechanism and explanation 
and large efforts have been put into unraveling the func-
tional consequences of GWAS SNPs [1–4]. Technologi-
cal advances in measuring molecular data led to a steady 
increase in biological resources providing simultaneous 
measurements of different types of molecules from the 
same individual. These include readouts of the genome 
(genotypes), the transcriptome (RNA abundance), and 
the epigenome (e.g., DNA methylation levels), yielding 
data commonly referred to as multi-omics data.

To elucidate disease mechanisms, systems genetics 
approaches link GWAS SNPs to intermediate molecu-
lar traits by identifying quantitative trait loci (QTL) [5, 
6], for example for gene expression levels (eQTL) [7–9] 
or DNA methylation at CpG dinucleotides (meQTL) 
[10–12].

Genetic variants that are QTL for quantitative molecu-
lar phenotypes that reside on a different chromosome 
are called trans-QTL. Previously, trans-QTL studies 
were successful in model systems [13, 14]. More recently, 
large-scale meta analyses of molecular QTL in very 
large sample sizes have been applied to successfully map 
large numbers of trans-QTL in humans [9, 12]. These 
are particularly interesting as they have been found to 
be enriched for disease associations [9, 10, 15]. Yet, the 
underlying mechanisms leading to such associations can 
usually not be explained in a straightforward way [8]. In 
fact, in a recent study most discovered blood trans-eQTL 
in human could not be explained [9].

Trans-QTL hotspots are genetic loci which influence 
numerous methylation or expression levels of genes on 
different chromosomes  [16]. Such coordinated effects 
can for instance be orchestrated through trans regulator 
genes encoded at the hotspot and further be propagated 
through regulatory networks involving protein-protein 
and/or transcription factor bindings. Trans-QTL hot-
spots can therefore be seen as footprints of regulatory 
molecular networks in the results of association studies 
and likely encode genomic master regulators. One way 
of mechanistically explaining the effects of these master 
regulators is by reverse engineering the regulatory net-
works and hence determining the intermediate molecu-
lar processes giving rise to the observed trans effects. 
This ultimately yields novel insights into disease patho-
physiology [1, 16–18].

A large body of work has focused on inferring regula-
tory interactions from high-throughput data by individu-
ally combining different omics data like gene expression 
levels and genotype [8, 19–23] or chromosomal aberra-
tion [24] information. Generally, network inference to 
uncover regulatory mechanisms in biological systems 
has gotten much interest [17, 25–28]. The emergence 

of multi-omics data now also allows for establishing 
networks across more than two omics layers in a holis-
tic approach to obtain more insight into the function of 
regulatory elements [18]. For instance, Bayesian net-
works have been applied to a collection of different data 
types in yeast to successfully reconstruct regulatory 
networks  [29]. Major efforts have been made to recover 
functional interactions from such data, but methods to 
successfully reverse engineer regulatory networks across 
multiple omics layers are still lacking [1, 6, 30, 31].

Furthermore, utilizing the wealth of data available 
from genomic databases as biological prior informa-
tion can guide the inference of complex multi-omics 
networks [31–33]. For instance, using known relation-
ships discovered in previous studies as prior knowledge, 
such as protein-protein interactions (PPIs) or eQTL, can 
facilitate network reconstruction on novel datasets. This 
information can be utilized as edge-specific “weights” or 
“penalties” during the inference process by methods such 
as BDgraph  [34] or the graphical lasso  [35], respectively 
(more details below).

Application of priors has been investigated in numer-
ous works (e.g., [17, 32, 34, 36–40]). While several studies 
show the advantage of using priors in synthetic datasets 
[26, 37, 39, 40] or model systems [17, 38, 40, 41], relatively 
few studies apply their inference methodologies to func-
tional genomics data in humans [34, 39, 42, 43]. In case 
human data are considered, either cell line data are used 
[42], the inference is restricted to a single pathway [43], 
or no informative priors are used for this specific context 
[34]. Zuo et al. apply prior based inference to human can-
cer gene expression data; however, they only use priors 
based on PPIs extracted from the STRING database and 
focus on differential expression analysis [39]. What is still 
missing is to comprehensively integrate the vast amount 
of functional data from large-scale databases [44–47] as 
prior information in human multi-omic trans-QTL stud-
ies and to determine the appropriate inference methods.

Here, we developed a novel approach for understand-
ing the molecular mechanisms underlying the statisti-
cal associations of trans-QTL hotspots by integrating 
existing biological knowledge and multi-omics cohort 
data to infer regulatory networks. We derived a com-
prehensive set of continuous priors from public datasets 
such as GTEx, the BioGrid, and Roadmap Epigenomics 
and applied state-of-the-art network inference methods 
including graphical lasso [35], BDgraph [34], GeneNet 
[48, 49], GENIE3 [50],  and iRafnet [38]. These priors 
and methods were then applied to (1) simulated and (2) 
real world cohort data from the KORA and LOLIPOP 
cohorts, encompassing genotype, gene expression, and 
DNA methylation data. We further provide a proof-of-
concept application of our approach to genotype and 
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gene expression data originating from skeletal muscle tis-
sue to showcase that it also translates to other contexts.

Methods
Cohort descriptions
In our study, we used cohort data from the KORA 
[51–53] and LOLIPOP studies. Both are population 
based studies with no selection for particular pheno-
types at enrollment. More details can be found in the 
individual sections below and in the referenced original 
publications.

Cooperative Health Research in the Region of Augsburg 
(KORA)
KORA (Cooperative Health Research in the Region of 
Augsburg) is a research platform of independent popu-
lation-based health surveys and subsequent follow-up 
examinations of individuals of German nationality resi-
dent in the region of Augsburg in southern Germany 
[51–53]. Written informed consent was obtained from all 
participants and the studies have been approved by the 
ethics committee of the Bavarian Medical Association. 
The present study is based on a subsample of 683 partici-
pants of the KORA F4 survey with methylation, expres-
sion, and genotyping data available (347 males and 336 
females aged 62 to 81 years, median age 69) [54]. Study 
design, sampling method, and data collection have been 
described in detail elsewhere [51–53].

The London Life Sciences Prospective Population Study 
(LOLIPOP)
LOLIPOP is a prospective cohort study of   28K Indian 
Asian and European men and women recruited from 
the lists of 58 General Practitioners in West London, 
UK, between 2003 and 2008 [55]. The LOLIPOP study 
is approved by the National Research Ethics Service (07/
H0712/150), and all participants gave written informed 
consent. At enrollment, all participants completed a 
structured assessment of cardiovascular and metabolic 
health, including anthropometry, and collection of blood 
samples for measurement of fasting glucose, insulin and 
lipid profile, HbA1c, and complete blood count with dif-
ferential white cell count. Participants have been followed 
for incident health events, and 13,347 have attended clin-
ical follow-up visits during which further blood samples 
were collected. The present study is based on a subsam-
ple of 612 participants of the LOLIPOP study with meth-
ylation, expression, and genotyping data available (259 
males and 353 females aged 27.67 to 74.92 years, median 
age 55.17) [55].

Cohort data processing
Methylation data were measured using the Infinium 
Human Methylation 450K BeadChip in both the KORA 
and the LOLIPOP cohort and methylation beta values 
obtained as described previously [54, 56]. Quantile 
normalized methylation beta values were adjusted for 
Houseman blood cell-type proportion estimates and 
the first 20 principal components calculated on the 
array control probes by using residuals of the following 
linear model:

For expression data, the Illumina HumanHT-12 v3 and 
Illumina HumanHT-12 v4 expression BeadChips were 
used in KORA and LOLIPOP, respectively, and processed 
as described previously [12, 57]. Only probes common to 
both arrays were selected for analysis. Expression data 
were adjusted for potential confounders by regressing 
log2 transformed expression values against age, sex, and 
RNA integrity number (RIN) as well as RNA amplifica-
tion plate (KORA)/RNA conversion batch (LOLIPOP) 
(batch1) and sample storage time (KORA)/RNA extrac-
tion batch (LOLIPOP) (batch2) and obtaining the residu-
als from the linear model:

Additional details on the cohort data and design are 
presented in [51–54, 57] (KORA) and [55, 56, 58] 
(LOLIPOP).

For the inference of the GTEx skeletal muscle-related 
network, we used GTEx v8 skeletal muscle data  [59]. 
Potential confounders including first 5 genotype PCs, 
60 expression PEER factors and measured covariates 
“WGS sequencing platform” (HiSeq 2000 or HiSeq X), 
“WGS library construction protocol” (PCR-based or 
PCR-free), and donor sex were removed from expres-
sion data prior to analysis. Processing has been per-
formed as previously described and details can be 
found elsewhere [59].

Hotspot extraction and construction of locus sets
We extract sub-sets of genomic entities (SNPs, CpGs and 
genes) on which we perform network inference based 
on the trans -meQTL reported by [12] (Supplementary 
Table 9 of their study) and the trans -eQTL obtained from 
the eQTLGen consortium [9, 60]. For GTEx, we obtained 
current (GTEx v8) tissue specific trans -eQTL from [61].

Hotspot extraction
The list of trans-meQTL results obtained from [12] was 
already pruned for independent genetic loci and was 

methylation � ∼ 1 + CD4T + CD8T + NK + BCell +Mono + PC1 +⋯ + PC20

expression ∼ age + sex + RIN + batch1+ batch2
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used as provided in the paper supplement. To remove 
redundant highly correlated genetic loci, we pruned 
the eQTLGen trans-eQTL by selecting the eQTLs with 
(1) the highest minor allele frequency and (2) the larg-
est number of trans genes for each LD cluster (1 Mbp 
window, R2 > 0.2 ). For GTEx, we merged eQTL by 
combining SNPs with R2 > 0.2 and distance < 1 Mbp 
to independent genetic loci and kept all trans genes 
(genes associated with eQTL genotype) of the indi-
vidual SNPs for this locus. The SNP with the highest 
MAF was selected as a representative SNP for the hot-
spot. We defined hotspots as genetic loci with ≥ 5 trans 
associations, yielding 107 hotspots for the meQTL and 
444 for the eQTLGen data. For GTEx, this approach 
yielded the single trans hotspot in skeletal muscle tis-
sue presented in this paper. The only other tissue in 
which a trans hotspot could have been defined was 
testis tissue. However, as prior data for this tissue were 
not readily available, we decided to continue solely 
with the skeletal muscle hotspot. In [12], the authors 
provide a total of 114 meQTL hotspots per our defi-
nition. We discarded 7 of the 114 meQTL hotspots 
(SNPs rs10870226, rs1570038, rs17420384, rs2295981, 
rs2685252, rs57743634, rs7924137, as either no cis 
genes are available or no gene expression data were 
measured for any of the annotated cis genes (mostly 
lincRNAs, miRNAs and pseudogenes; Additional File 
1: Table  S1), which are needed for locus set definition 
(see below). All hotspots and the corresponding trans 
meQTLs and eQTLs are listed in Additional File 2: 
Table S1 and S2.

Locus sets
To mitigate the N << P problem in network inference 
[6], where the number of features or parameters far 
exceeds the number of samples, we run the inference 
on a subset of genomic entities (SNPs, genes and CpGs) 
induced by trans hotspots. We therefore gathered all 
genes, which could be involved in mediating the observed 
QTL effects and thus were considered during the net-
work inference, in the form of locus sets for each hotspot. 
We bridge the gap between the involved chromosomes 
by including transcription factor binding site (TFBS) 
information collected from ReMap [62, 63] and ENCODE 
[64–66] as well as human protein-protein interaction 
(PPI) information available via “theBioGrid” [67, 68] (ver-
sion 3.5.166). We filtered ReMap and ENCODE TFBS for 
blood related cell types by selecting all samples which 
contain at least one of the following terms: “amlpz12_leu-
kemic,” “aplpz74_leukemia,” “bcell,” “bjab,” “bl41,” “blood,” 
“lcl,” “erythroid,” “gm,” “hbp,” “k562,” “kasumi,” “lympho-
blastoid,” “mm1s,” “p493,” “plasma,” “sem,” “thp1,” and 

“u937.” Genes in the PPI network were filtered for genes 
expressed in whole blood (GTEx v6p [69] RPKM > 0.1 ). 
We enumerated all entities to be included in the locus set 
by performing the following steps: 

1.	 Define set SL for a locus L and add the QTL enti-
ties (QTL SNP S and trans-QTL genes/CpGs 
T = {T1, . . . ,Tq} , where q is the number of associ-
ated trans entities for L)

2.	 Add all genes encoded within 500kb (1Mbp window) 
of S as SNP-Genes to SL (set GC)

3.	 For meQTL hotspots, add genes in the vicinity of 
each Ti ∈ T  (previous, next, and overlapping genes 
with respect to the location of Ti ) as CpG-Genes to 
SL (set GT)

4.	 Add all TFs with binding sites within 50bp of each 
CpG or binding in the promoter region of each gene 
over all Ti ∈ T  to SL (set GTF)

5.	 Add shortest path genes GSP , i.e., genes which con-
nect GC (step 2) with GTF (step 4) according to 
BioGrid PPIs to SL

To define GSP , we added only genes which reside on the 
shortest path between the trans entities T  and the SNP-
Genes GC in the induced PPI sub-network, i.e., contain-
ing all genes and their connections which can be linked to 
either GC or the TFs GTF . Specifically, we added the CpGs 
to the filtered BioGrid PPI network [67], connected them 
to the TFs ( GTF ) which show binding sites in their vicin-
ity and calculated node weights based on network propa-
gation as described in [12]. We then extracted nodes on 
paths with maximal total propagation score based on 
node-wise propagation scores PS. For this, we weighted 
node scores proportional to (−1)× PS and then calcu-
late the minimal node-weight paths between trans enti-
ties T  and SNP-Genes GC using the sp.between() method 
of the RBGL R package (version 1.56.0, R interface to the 
Boost Graph Library [70]) and extracted all genes on the 
resulting shortest paths. All nodes of the generated locus 
set were subsequently used as inputs to the network 
inference.

Prior generation
We utilized several data sources to define priors for pos-
sible edges between and within different omics levels. 
Each possible edge between entities in the locus set can 
only be assigned a single type of prior. Specifically, the 
different priors include:

•	 SNP-to-Gene priors, for edges between the SNP S 
and SNP-Genes GC
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•	 Gene-to-Gene priors, for edges between all gene-
gene combinations except TFs GTF and their eQTL 
based targets in T

•	 CpG-to-Gene priors, for edges between CpGs in T  
and their neighboring genes GT

•	 TF-to-target priors, for edges between TFs GTF and 
their targets in the trans set T

SNP‑to‑Gene
To obtain SNP-to-Gene edge priors, we downloaded the 
full GTEx v6p whole-blood eQTL table [71]) and calcu-
lated, for each SNP-Gene pair, the local false discovery 
rate (lFDR, [72]) using the fdrtool R package (version 
1.2.15). As described in Efron et al. (2008) [72], the lFDR 
represents the Bayesian posterior probability of having 
a null case (i.e., that the null hypothesis is true) given a 
test statistic. We therefore defined the prior for a specific 
SNP S and a SNP-Gene GC as pSGC

= 1− lFDRSGC
.

Gene‑to‑Gene
We formulate Gene-to-Gene edge priors by combining 
public GTEx v6 gene expression data [44] with PPI infor-
mation from the BioGrid [67] to retrieve co-expression 
p-values and the respective lFDR for pairs of genes con-
nected by a protein–protein interaction. A special case 
are priors between TFs and their target genes as identi-
fied via ChIP-seq (see above), which are not considered 
as Gene-to-Gene edges but are handled separately as 
described under “TF-to-target priors” below. GTEx v6p 
RNA-seq gene expression data were downloaded from 
the GTEx data portal [69]. Expression data for GTEx 
were filtered for high quality samples (RIN ≥ 6 ) and log2 
transformed, quantile normalized, and transferred to 
standard normal distribution before removing the first 
10 principle components to remove potential confound-
ing effects [73]. Priors were derived for all Gene-Gene 
pairs with PPIs in the BioGRID [67] network, where a 
gene G ∈ GC ∪ GTF (for meQTL) or G ∈ GC ∪ GTF ∪ T  
(for eQTL). For each pair, we calculated the Pear-
son correlation p-values in the GTEx expression data 
and subsequently determined the lFDR over all p-val-
ues. The prior for two genes GA and GB was then set to 
pGAGB = 1− lFDRGAGB.

CpG‑to‑Gene
For the CpG-to-Gene priors (meQTL context only), we 
utilized two strategies, distinguishing between TF-CpG 
priors (i.e., priors between CpGs and TFs showing bind-
ing sites near the CpG site, described below under “TF-
to-target priors”) and CpG-to-Gene priors (i.e., where 
the gene itself is encoded near the CpG). For the CpG-to-
Gene priors, we utilized the genome-wide chromHMM 

[74] states (15 states model) identified in the Roadmap 
Epigenomics project [46, 75]. These states reflect func-
tional chromatin states in 200bp windows and were 
obtained using histone mark combinations as identified 
via ChIP-sequencing. We quantified a CpGs potential to 
affect a nearby gene, pTx , by retrieving the proportion of 
Roadmap cell-lines in which the CpG resides within a 
transcription start site (TSS) related state (see Table  1). 
We further adjusted the pTx by weighting state informa-
tion according to the Houseman blood cell type estimates 
available from our data. To this end, we took the popula-
tion mean for each of the Houseman cell proportion esti-
mates and multiplied them with the chromHMM state 
proportions. A specific CpG-to-Gene prior for a CpG 
Ti ∈ T  and a gene GTi ∈ GT was then set to pTiGTi

= pTx , 
if the genomic distance d(Ti,GT ) <= 200bp.

TF‑to‑target priors
We formulate separate priors for all edges between tran-
scription factors GTF and trans CpGs (meQTL) and trans 
genes (eQTL) in T  . Priors were only set for TF-to-CpG 
edges were we observe a TF binding site (from ReMap/
ENCODE, see above) within 50bp of the CpG. For TF-to-
Gene edges, we only considered pairs were the TF has a 
binding site 2000 bp upstream and 1000 downstream of 
the gene’s TSS. In both cases, if the TFBS criteria are met, 
we set a fixed large prior of 0.99 for all GTF-T  pairs to 
represent the strong protein-DNA interaction evidence 
of ChIP-seq data. TFBS for skeletal muscle tissue were 

Table 1  Description of chromHMM states used in our analyses 
as given at https://​egg2.​wustl.​edu/​roadm​ap/​web_​portal/​chr_​
state_​learn​ing.​html. Boldfaced states were defined as “active 
transcription” states and used to set CpG-Gene priors

State no. Mnemonic Description

1 TssA Active TSS
2 TssAFlnk Flanking active TSS
3 TxFlnk Transcr. at gene 5′ and 3′

4 Tx Strong transcription

5 TxWk Weak transcription

6 EnhG Genic enhancers

7 Enh Enhancers

8 ZNF/Rpts ZNF genes and repeats

9 Het Heterochromatin

10 TssBiv Bivalent/poised TSS
11 BivFlnk Flanking bivalent TSS/Enh
12 EnhBiv Bivalent enhancer

13 ReprPC Repressed polycomb

14 ReprPCWk Weak repressed polycomb

15 Quies Quiescent/low

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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predicted using factorNet (see the “TFBS prediction for 
muscle tissue” section).

Finally, the priors for all remaining possible edges 
which were not set based on one of the criteria described 
above, i.e., Gene-Gene pairs without PPI evidence, TF-
CpG pairs without ChIP-seq evidence, and SNP-Gene 
pairs without eQTL in the GTEx data, were set to a small 
pseudo-prior ppseudo = 1× 10

−7.

Ground truth network generation, data simulation, 
and prior randomization
We performed a simulation experiment for each of the 
meQTL hotspots. For each SNP S and its correspond-
ing locus set SL , we first collect the corresponding 
prior matrix PS with priors defined as described above. 
We generate 10 erroneous ( GN ) ground truth graphs 
G10

N ,G20

N . . .G100

N  by switching edges in the graph while 
keeping the degree distribution of a sampled graph GT . GT 
is generated using all entities of SL by uniformly sampling 
from PS , i.e., GT contains an edge eij for each element 
pij of PS , if pij > ppseudo and runif (0, 1) <= pij , where 
runif(0, 1) generates uniformly distributed random num-
bers between [0,1]. This procedure effectively introduces 
errors in the study. For instance, by switching 10% of the 
edges from GT to generate G10

N  , and making sure, that the 
new edges are not present as priors in PS , we introduce 
a error degree of 10% when comparing PS to G10

N  . We 
simulate data for each GS ∈ {GT ,G

i
N ; i ∈ {10, 20, . . . , 100}} 

using the bdgraph.sim() method of the BDgraph pack-
age with parameters: p = | SL | (number of nodes), graph 
= GS , N = 612 (number of samples in LOLIPOP), and 
mean = 0. This approach generates normally distributed 
data with a covariance structure as defined by the ground 
truth graph. We want to assess the impact of having dis-
crete (genotype) data present for the network inference. 
To this end, we converted the SNP variable in the simu-
lated data to genotype dosages (0,1,2) reflecting the allele 
frequencies of the genetic variant used in this simula-
tion run. Specifically, we transformed the Gaussian data 
obtained from bdgraph.sim() to discrete values using the 
frequencies of the individual dosages for the SNP in the 
LOLIPOP data as quantile cut points. For each of these 
simulated data individually, we infer the network mod-
els and compare the inferred networks to the respective 
ground truth graphs GT ,G

10

N , . . . ,G100

N  . We added one 
additional comparison, evaluating a prior on the den-
sity of the observed graph. For this, we estimated a sin-
gle prior value reflecting the desired density for all edges 
based on a binomial model. We use the number of edges 
|EGT | of all sampled graphs GT for a single run, the total 
number of possible edges |ET | = (N ∗ (N − 1))/2 , with N 
the total number of available nodes, and set the prior as

where NS is the number of sampled graphs (i.e., the num-
ber of randomizations). For each hotspot, we repeated 
the above simulation procedure 100 times to obtain sta-
ble results. We repeated the simulation analysis for differ-
ent scenarios based on available sample size, including (1) 
prior error analysis for low sample size (N = 70) and (2) a 
no-error scenario with different sample sizes. For the lat-
ter, we sub-sampled the simulated data to retain only 50, 
100, 150, . . . 600 samples and performed network infer-
ence on these data. Finally, we investigated the effect of 
“prior completeness” on inference performance. For this, 
we progressively removed 10%, 20% . . . 90% of the pri-
ors for the inference (replacing prior values for selected 
edges with our pseudo prior) and repeated the inference 
for the adjusted priors.

Network inference
Based on the data and priors gathered for the individ-
ual hotspots, we set out to infer the regulatory networks 
which are best supported by these data. We evaluated 
several state-of-the art methods with respect to their 
applicability to this problem, both in a simulation study 
(see above) and via replication of inferred networks in 
real-world data from two large human population-based 
cohorts. We applied GeneNet [48, 49], the graphical lasso 
(glasso, [35]), BDgraph [34], and  iRafNet [38] as well as 
GENIE3 [50] on the individual data to reconstruct regula-
tory networks using the respective CRAN [76] and biocon-
ductor [77] R packages. An overview on the used inference 
methods and package versions is given in Additional File 1: 
Table S2. Methods were chosen to reflect a range of differ-
ent approaches (i.e., shrinkage based partial correlation in 
GeneNet, Bayesian MCMC sampling in BDgraph, lasso in 
gLASSO and tree-based inference in iRafNet and GENIE3), 
based on whether or not implementation was readily avail-
able and whether prior knowledge could be incorporated. 
The well-known GeneNet and GENIE3 methods are not 
capable of utilizing prior information but were used as a 
reference for comparison to the other methods. We per-
formed parameter optimization for all methods. For 
instance, for the graphical lasso, we implement screening 
of the penalty parameter lambda based on cross valida-
tion (details below). Lambda translates to a global weight 
for the edge-wise prior information supplied to the model. 
We hence effectively screen different weights for the priors 
for all methods. To obtain final networks, we use the same 
strategy suggested in [78] for GENIE3, GeneNet, iRafNet, 
and BDgraph (see below) to obtain optimal edge cutoff 
points. For the graphical lasso, we used an approach based 

prbinom = max(
1

NS
∗ GT

|EGT |
|ET |

, ppseudo),
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on cross validation (also described below) to screen the 
penalty parameter.

GENIE3
To infer networks with GENIE3, we again used the NA 
filtered data (see above) with the GENIE3 method of the 
package followed by the getLinkList method using default 
parameters. GENIE3 generates a ranked list of regula-
tory links which do not relate to any statistical measure 
and hence a cutoff for the link weights has to be identi-
fied manually [79]. To define an optimal cutoff, we first 
divide the list of weights into 200 quantiles (marking 200 
distinct cutoffs) if the number of unique link weights 
exceeded 200. We then extracted for each cutoff the 
respective regulatory network and compared it to a scale 
free topology analogously to the approach used in [78], 
generating R2 values indicating the goodness-of-fit to the 
topology. To choose the final network, we followed the 
approach suggested by Zhang et  al. (2005) [78], which 
suggests to use networks with R2 > 0.8 . If none of our 
networks fit that criteria, we choose the network with the 
highest R2 . Cutoffs have been similarly obtained for the 
other methods described below.

GeneNet
For the application of GeneNet, we first filtered any CpG 
probes from the data containing missing values. We then 
estimated the regulatory network by calling first the ggm.
estimate.pcor followed by the network.test.edges and 
extract.network methods, all with default parameters.

BDgraph
We used BDgraph to infer networks under consideration 
of prior information as well as without prior information 
(BDgraph and BDgraphP ) using the bdgraph method of 
the BDgraph CRAN package (version 2.61). The follow-
ing parameters were set: method = “gcgm”, iter = 10000, 
burnin = 5000. We further set the g.prior parameter to 
the prior matrix collected for the hotspots and the g.start 
parameter to the incidence matrix obtained from the 
prior matrix by setting all entries with prior information 
> 0.5 to 1 and all others to 0. For comparison with the no 
prior case, we kept all parameters the same but omitted 
the g.start and g.prior parameters. The graph was then 
obtained from the fitted model using the select method 
of the package with parameter cut = 0.9, thereby only 
choosing edges with a posterior probability of at least 0.9.

iRafNet
We use iRafNet to infer networks using prior infor-
mation (it is not possible to run it without specify-
ing priors). We called the iRafNet method of the 
package, setting the parameters ntrees = 1000, mtry = 

round(sqrt(ncol(data)-1)), and npermut = 5 using the 
data filtered for missing values (see above) and then used 
the Run_permutation method with the same parameters. 
The final network was extracted using the iRafNet_net-
work method by supplying the output of the previous 
method calls and setting the FDR cutoff parameter TH 
= 0.05. We used a custom implementation of iRafNet 
adjusted to make use of multiple CPUs which we made 
available at https://​github.​com/​jhawe/​irafn​et_​custom.

glasso  Similar to BDgraph, we utilized the graphical 
lasso both with and without prior information. To infer the 
graphical lasso models, we used the glasso method avail-
able in the glasso CRAN package and set the parameter 
penalize.diagonal = FALSE. The glasso takes a regulariza-
tion parameter � , which implies either strong penalization 
of edges (high � ) or weak penalization (low � ) of param-
eters. This parameter can also be supplied as a matrix � 
of size n× n (where n is the number of nodes/variables) in 
order to supply individual parameters for individual edges. 
We integrated the prior information by first transforming 
the prior matrix P such that � = 1 − P and then sup-
plying � as the regularization matrix containing values 
for each possible edge. This approach is similar to what 
has been proposed in [36, 37]. In addition, we screened 
a selection of penalization factors ω for both the prior 
and the none prior case to construct the optimal graphi-
cal lasso network with respect to the Bayesian Informa-
tion Criterion (BIC). For the prior case, we included ω in 
the model by setting � = �× ω ). For the non-prior case, 
we set � = ω . We performed 5-fold cross validation and 
inferred the model for all ω ∈ {0.01, 0.015, ..., 1} on the 
training set (containing 80% of the data) and then selected 
the ω yielding the minimal mean BIC value on the test 
data over all folds to generate the final network.

Method evaluation via simulation study and cross cohort 
replication
To identify the inference method best suited for our 
application, we evaluated all described network infer-
ence methods independently on the simulated data as 
to (1) their ability to reconstruct the underlying ground 
truth network as well as (2) their robustness to errors in 
the supplied prior information. We further compared 
networks inferred independently on the different cohort 
data to assess stability of the network inference across 
different, yet similar, data. Performance was measured 
in terms of Matthews correlation coefficient (MCC) [34, 
80, 81] between the inferred networks and the respective 
ground truth (simulation study) and the inferred net-
works on the different cohorts (cross cohort replication). 
It is defined as:

https://github.com/jhawe/irafnet_custom
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MCC was calculated using the compare() method as 
implemented in the BDgraph package (version 2.61).

Transcription factor activities
We calculated transcription factor activities for all TFs 
extracted from the ReMap/ENCODE (see above) using 
the plsgenomics R package’s TFA.estimate() method (ver-
sion 1.5-2) [82]. As input, we used the full expression 
matrix from KORA and LOLIPOP (whole-blood) and 
from GTEx (skeletal muscle) individually to obtain tis-
sue specific TFAs. TFBS information was encoded as an 
incidence matrix indicating for each TF its target genes. 
Target genes were defined as genes with an TFBS within 
their promoter region (2000bp upstream and 1000bp 
downstream of the TSS).

Network prioritization and final network creation
Networks were inferred for each of the 107 meQTL 
and 444 eQTLGen trans hotspots with gLASSOP and 
BDgraphP , yielding networks with a median number of 
67 and 20 edges for gLASSOP and 72 and 27 for BDgraphP 
over all hotspots, respectively. We filtered and ranked the 
networks based on the following criteria.

GWAS filtering
We filtered genetic loci with hits in genome-wide asso-
ciation studies (GWAS) using the current version (v1.0.2) 
of the GWAS catalog [83]. We extracted high LD (> 0.8) 
SNPs and SNP aliases using the SNiPA tool [84] for each 
hotspot SNP. If any of the extracted SNP rsIDs had a 
match in the GWAS catalog, the hotspot’s inferred net-
work was permitted for downstream analysis.

Network ranking
We utilized a self-devised graph score for prioritizing 
final models for further investigation. The graph score 
reflects desirable biological properties, which can be 
assumed for the networks underlying the trans -QTL 
hotspots. The score is formulated such that (1) the adja-
cency of SNP-genes and SNPs is rated positively, (2) the 
presence of trans entities is rated positively if they are not 
connected directly to the SNP, and (3) high graph den-
sity is rated negatively (i.e., sparser graphs yield higher 
scores). Specifically, the graph score SG for an inferred 
graph G is defined as:

(1)MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN ) × (TN + FP) × (TN + FN )

SG = −log10(DG) ∗ [
1

|GC |
(

|GS |∑

i=1

1−
|GS |∑

i=1

1)+
1

|T |
(

|GT |∑

i=1

1−
|GT |∑

i=1

1)]

where DG is the graph density, GC is the set of all SNP-
Genes, T  is the set of all trans entities, GS is the set of 
all SNP-genes adjacent to the SNP in G or directly con-
nected to another SNP-Gene, GS  is the set of SNP-Genes 
in G but not connected directly to the SNP or one of 
the other SNP-Genes, GT is the set of trans entities in G 
which can be reached from any SNP-Gene without tra-
versing the SNP or another trans gene first, and GT  is the 
set of trans genes directly connected to the SNP. Only the 
cluster containing the SNP, i.e., the SNP itself and any 
nodes reachable from the SNP via any path in G, is con-
sidered for calculating SG ; if the SNP is not present or no 
SNP gene has been selected in the final graph, the score 
is set to 0.

In addition to the graph score, we ranked networks 
according to the total number of edges and nodes to pri-
oritize smaller networks for detailed analysis.

Graph merging
Finally, we constructed hotspot networks containing 
only high confidence edges by merging the individually 
obtained networks from the two cohorts (KORA and 
LOLIPOP) and keeping only edges and nodes present in 
both networks. Nodes without any adjacent edges are not 
included in the final graph.

Priors for skeletal muscle tissue
We downloaded Muscle tissue eQTL generated by Scott 
et  al. (2016) [85] from https://​thepa​rkerl​ab.​med.​umich.​
edu/​data/​papers/​doi/​10.​1038/​ncomm​s11764/ and used 
local FDRs calculated from the provided p-values to 
define SNP-Gene priors. Gene expression data for mus-
cle tissue were obtained from the ARCHS4 [47] database. 
We downloaded all relevant muscle expression data using 
the keywords “Skeletal_Muscle” with the ARCHS4 loader 
[86] (N = 194 samples). Expression data were normal-
ized using the ComBat method implemented in the sva 
R package while providing dataset series ID as the batch 
parameter.

TFBS prediction for muscle tissue
We used factorNet [87] to predict transcription factor 
binding sites from DNAse-seq chromatin accessibility 
data obtained from muscle cell lines. First, we trained a 
factorNet model for all TFs available for the K562 cell-
line in ReMap [62]. ReMap ChIP-seq peaks functioned 
as a ground truth during training, DNAse-seq data from 
ENCODE (dataset accession ENCFF971AHO) [64, 65, 
88] and DNA sequence information formed the inputs. 
We downloaded DNAse-seq data for the LHCN-M2 
muscle cell-line from ENCODE in bigWig format for 

https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
https://theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/
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hg38 (dataset accession ENCFF639MPM [89]). Factor-
Net was then run with default parameters, using as input 
(1) the DNA sequence and (2) the bigWig DNAse track 
for each of the trained ChIP-seq tanscription factors (N 
= 179 TFs from ReMap). High confidence TFBS were 
extracted by setting a factorNet score cutoff of 0.999, 
merging overlapping regions and then retaining only 
regions with a width < W0.95 , where W0.95 is the 95th per-
cent quantile of the widths of all obtained regions.

Colocalization analysis
GWAS summary statistics for schizophrenia were iden-
tified using the GWAS Atlas [90] and downloaded from 
[91]. Whole-blood trans-eQTL summary statistics for all 
SNP-Gene pairs from eQTLgen were downloaded from the 
eQTLgen website [60] (file “Full trans-eQTL summary sta-
tistics”). We used fastENLOC [92, 93] to calculate colocali-
zation probabilities as described in the fastENLOC Github 
README using default parameters. To generate probabil-
istic eQTL annotations, we used DAP-G [94, 95] and cre-
ated PIP files as needed using TORUS [96]. For LD block 
definition, we utilized data available from LDetect [97, 98].

Results
Trans‑QTL hotspots define regulatory network candidates
In this study, we aimed to reconstruct regulatory 
networks to explain trans quantitative trait locus 

(trans-QTL) hotspots on a molecular level through 
simultaneous integration of multi-omics data [6]. We 
sought to improve our understanding of likely disease 
associated trans-QTL hotspots  [10, 15] to reveal their 
mechanisms of action and gain insights into regulatory 
pathways and ultimately into disease processes.

Our general analysis strategy is depicted in Fig.  1A and 
consists of the following steps: (1) curate QTL hotspots, (2) 
gather individual level molecular data and independent prior 
information, (3a+b) benchmark network inference meth-
ods in simulation (a) and replication (b) study to select the 
optimal method, and (4) infer and interpret networks identi-
fied in the cohort data. The individual level molecular cohort 
data used for network inference include gene expression 
and DNA methylation (whole blood, KORA, and LOLIPOP 
cohorts) or gene expression data (skeletal muscle, GTEx) in 
addition to the genotype data available in all cohorts.

We obtained trans hotspots from the methylation 
QTL (meQTL) discovered in whole-blood in the KORA 
[54] and LOLIPOP [56] cohorts reported by Hawe et al. 
[12] and the expression QTL (eQTL) published by the 
eQTLGen consortium [9], yielding a total of 107 and 444 
trans -loci per QTL type, respectively (Fig.  1B, see Sec-
tion 2). In addition to the whole-blood derived hotspots, 
we curated a single trans-eQTL hotspot in Skeletal Mus-
cle tissue from GTEx v8 [44, 45, 59] which was analyzed 
separately.

Fig. 1  Project overview. A A graphical abstract of the analyses performed in this project. B A global view on the collected eQTL (orange) and 
meQTL (green) hotspots. The x-axis indicates ordered chromosomal positions for trans genes and trans CpG sites, respectively. C The total number of 
different genomic entities gathered over all hotspots during locus set creation (log scale). D Density plots of the number of possible network edges 
with available prior information (x-axis) over all hotspots, zoomed in to area between 0 and 1000. Same color coding is used in B–D 
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For each hotspot, we aimed to identify the causal gene 
at the genetic locus affected by the SNP and the inter-
mediate genes that give rise to the observed trans asso-
ciations. To this end, we collected sets of candidate genes 
with different roles for each locus. We term these sets 
“locus sets” (see Section 2). A locus set contains the SNP 
defining the hotspot and the respective trans-associated 
traits, i.e., “trans CpGs” for meQTL and “trans genes” for 
eQTL. We further add genes encoded near the SNP as 
candidate causal genes (“cis genes”) and genes in vicin-
ity of the CpGs of the meQTLs (“CpG genes”). Finally, 
as potential intermediate genes, we include transcrip-
tion factors binding near the trans associated genes/
CpGs (“TFs”) as well as genes residing on the shortest 
path between trans CpGs/trans genes and cis genes in a 
protein-protein interaction (PPI) network (“PPI genes”). 
Cis genes form potential candidate regulator genes of the 
locus and the inclusion of the PPI genes and TFs allows 
us to bridge the inter-chromosomal gap between the SNP 
and the trans CpGs/trans genes. An overview of enti-
ties collected over all loci for both QTL types is given in 
Fig. 1C.

One main aspect of this work is the use of any form of 
biological prior information, including continuous scores, 
to guide network inference. We hence collect prior infor-
mation for all possible edges between entities contained 
in locus sets in addition to the individual level molecu-
lar data (Fig. 1A—step 2). In total, four distinct types of 
edges are annotated with prior information: SNP-Gene, 
Gene-Gene, TF-CpG/TF-Gene, and CpG-Gene edges. 
All prior information is generated from tissue matched, 
public data independent of the data used during network 
inference (see Section 2).

Figure  1D indicates the total number of edges anno-
tated with prior information over all hotspots. For 
meQTL and eQTL, a minimum of 2 and 3 edges per hot-
spot show prior evidence, respectively, and most hotspots 
get only relatively few priors compared to the total num-
ber of possible edges (median 26 and 94, respectively). 
However, several networks collect priors for over 100 
edges (8 and 209 loci with >= 100 priors for meQTL and 
eQTL). As expected, the total number of edges with prior 
information per locus correlates with the total number of 
possible edges in the respective loci. However, the frac-
tion of all possible edges annotated with prior informa-
tion decreases (Additional File 1: Fig. S1).

Benchmark of network inference methods
Simulation study shows benefit of data‑driven priors
Numerous methods for regulatory network inference 
have been proposed (e.g., [35, 48, 50], see also [6]). We 
therefore sought to select the method best suited for this 
study before investigating individual hotspots in detail 

(see Fig.  1A—step 3). To this end, we performed an 
extensive simulation study (Fig. 1A—step 3a) to evaluate 
the performance of five distinct methods (see Additional 
File 1: Table  S2 for a method overview) in reconstruct-
ing ground truth graphs from simulated data and prior 
information.

To ensure that the simulated ground truth has the 
same characteristics as the real data, we randomly sam-
pled graphs from the prior distributions for each of the 
observed 107 meQTL hotspots (median number of 
nodes: 28). In a second step, we sampled the quantitative 
individual level data corresponding to the ground truth 
graph for 612 individuals. A total of 100 simulation runs 
were performed for each hotspot. To study the impact 
of errors in the prior, we randomly rewired a fraction 
of edges (0 to 100%, see Section  2) in the ground truth 
graph that we used for comparing the networks inferred 
on simulated data. We further sub-sampled decreasing 
numbers of individuals from the full simulated data to 
assess the effect of sample size, and we sub-sampled the 
prior edges used for analysis to assess the effect of incom-
plete priors.

We gauge the relative gain in performance attribut-
able to prior information for both gLASSO and BDgraph 
by always training two distinct models, one with priors 
( gLASSOP , BDgraphP ) and one without priors (gLASSO, 
BDgraph). The implementation of iRafNet always requires 
a prior matrix, whereas both GeneNet and GENIE3 can-
not utilize prior information and hence were trained only 
with the simulated data. We focused on Matthews corre-
lation coefficient (MCC) [80] as a balanced performance 
measure to compare inferred networks to the respective 
ground truth (see also [34]). Figures 2A and 2B show the 
results for the simulation study for all methods (see also 
Additional File 1: Tables S3–S8 and Fig. S2).

Both gLASSOP and BDgraphP exhibit improved perfor-
mance with relatively low standard deviation in terms of 
MCC as compared to their non-prior counterparts in low 
and high sample size settings . BDgraphP and gLASSOP 
exhibit the best performance across all methods on simu-
lated data that we deem close to our real-world scenario 
(low prior error at 20% and high subset size at N=600). 
In general, the performance of most methods is affected 
by low sample sizes with BDgraph showing slightly bet-
ter performance than all other methods. Moreover, both 
gLASSOP and BDgraphP outperform all other methods as 
long as the prior error does not exceed 10% ( gLASSOP ) 
and 30% of incorrect edges in the prior graph, in which 
case BDgraph achieves the highest median MCC over 
all methods. Prior information containing less than 30% 
of incorrect edges significantly improves the network 
reconstruction with BDgraph, while glasso can profit 
from priors with even more errors, with up to 60% of 
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wrong edges (Additional File 1: Fig. S3A). When the prior 
contains a very high fraction of incorrect edges (80%), 
increasing sample sizes become more important (Addi-
tional File 1: Figs.  S2,  S4). In general, a good method 
should be able to dynamically adjust the overall weight 
given to the prior information depending on the qual-
ity of the prior and the sample size during cross valida-
tion. We verified this for the glasso as an example. The 
overall weight for the prior (rho) indeed decreases with 
increasing sample size and error in the prior (Additional 
File 1: Fig. S12). GeneNet performs well in all simulations, 
whereas GENIE3, gLASSO, and iRafNet show about aver-
age performance with iRafNet achieving worst results 
overall. Overall, methods including prior information 
significantly outperform the other methods at 10% incor-
rect prior edges (Additional File 1: Fig. S3B). In addition 
to the curated prior matrices, we also generated a prior 
matrix reflecting the sparsity of the true graph (column 
“rbinom” in Fig.  2B and Additional File 1: Tables  S3 
and  S4, see Section  2). Our results indicate that infor-
mation about sparsity of the underlying network already 
improves network inference performance. We note that 
results are similar when looking at sensitivity instead of 
MCC, while the specificity of individual methods only 

changes slightly for different fractions of incorrect prior 
edges (Additional File 1: Fig.  S5 and Tables S5 and S8) 
due to the class imbalance towards absent edges. Cur-
rent prior networks are expected to be incomplete [99, 
100] and different reference networks showed limited 
overlap (Additional File 1: Table S9). Therefore, we com-
plemented our analysis of prior error with an analysis 
of “prior completeness”  by assessing how performance 
changes when keeping only F  = 10%, 20%, . . . , 90% of 
prior information (edges in the prior network). Even 
when keeping only 10% of prior information, gLASSOP 
achieves better performance than gLASSO (Additional 
File 1: Fig. S6, P < 2.2e−16, two-sided Wilcoxon test) and, 
as expected, the difference in performance increases the 
more prior information is available. Bdgraph seems more 
sensitive to incomplete prior information and BDgraphP 
only outperforms BDgraph when keeping at least 60% of 
the original prior information. Further, prior based meth-
ods and specifically BDgraphP outperform non-prior 
methods in the task of identifying the correct cis-gene 
by recovering associations between the discrete SNP and 
continuous gene expression data types (Additional File 
1: Fig. S7), when using independent eQTL data as prior. 
Direct comparison of the impact of prior completeness 

Fig. 2  Method comparison results. A Results of simulation study: y-axis shows the Matthews correlation coefficient (MCC) as compared to the 
simulated ground truth; x-axis indicates increasing sample size from left to right; colors indicate different inference methods. B Similar to A, but 
x-axis indicates increasing errors in the prior matrix from left to right for N = 612 samples. Group (‘rbinom’) indicates uniform prior set to reflect 
degree distribution of true graph. C MCC (y-axis) between networks inferred on KORA and LOLIPOP data for same locus for all methods (x-axis). 
D contrasts MCC across cohorts using TF expression (dark gray) versus using substituted TFAs (light gray). Boxplots show medians (horizontal line) 
and first and third quartiles (lower/upper box borders). Whiskers show 1.5 ∗ IQR (inter-quartile range); for B, dots depict individual results, and for 
C, stars indicate significant difference between expression/TFA results for each method (Wilcoxon test, *: P ≤ 0.05 , **: P ≤ 0.01 , ***: P ≤ 0.001 , ****: 
P ≤ 0.0001)
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and error in the prior showed that errors in prior infor-
mation are more harmful for prediction performance 
than incomplete priors (see Additional File 1: Fig. S8). 
This is in line with the expectation that wrong prior 
edges increase the chance of predicting both false-posi-
tive and false-negative edges, while missing prior edges 
only increase the chance of not predicting edges that are 
actually present (false negatives). Finally, we investigated 
run-time requirements for the individual methods. Here, 
GeneNet outperformed all other methods, followed by 
gLASSO, BDgraph, and GENIE3, with iRafNet exhibiting 
slowest run-time (Additional file 1: Fig. S9).

Inferred networks replicate in independent datasets
In addition to the simulation study, we evaluated the 
methods on real world data from two large population 
cohorts: the KORA (Cooperative Health Research in 
the Region of Augsburg) [54] and LOLIPOP (London 
Life Sciences Population) [55] cohorts (see Fig. 1A2 and 
Section 2). Data from both cohorts were generated from 
whole-blood samples and contain imputed genotypes 
as well as microarray measurements of gene expression 
and DNA methylation for a total of 683 (KORA) and 
612 (LOLIPOP) samples. Since for these data no ground 
truth is available, we evaluate robustness of the networks 
inferred by the individual methods via cross cohort repli-
cation. For each hotspot, we collected data for all genes, 
CpGs, and the SNP in the locus set for KORA and LOLI-
POP and separately inferred networks in both cohorts 
for all models. Obtained networks were then compared 
between cohorts using MCC to get a quantitative esti-
mate of how robust the network inference is across dif-
ferent datasets for the same hotspot yielding scores for 
KORA versus LOLIPOP and vice versa (i.e., one network 
functioning as the reference). The results of this analysis 
are shown in Fig. 2C. With respect to MCC, models sup-
plied with prior information ( gLASSOP , gLASSOP and 
iRafNet) show the best performance with gLASSOP com-
ing up as the most robust method followed by gLASSOP 
and iRafNet. Noticeably, of the top methods gLASSOP 
shows much less variance compared to gLASSOP and 
iRafNet. Ignoring prior information lead to a drop in per-
formance for both gLASSO and BDgraph, which leads to 
GeneNet outperforming both methods. Finally, GENIE3 
shows worst performance in this setting.

Replication between cohorts can either be driven by 
strong evidence in the data in both cohorts or by strong 
priors. To assess the contribution of the evidence in the 
data, we grouped inferred edges according to their rep-
lication status and prior availability. The evidence in the 
data was quantified by the correlation in the replication 
data set. For both gLASSO and BDgraph, we observed 
that around half of the inferred edges are mostly driven 

by the prior and the replicated edges without prior show 
stronger evidence in the data (Additional File 1: Fig. S10).

Transcription factor activities as a proxy to TF activation
Transcription factor activities (TFAs) estimated from 
transcription factor binding sites (TFBS) and gene 
expression data have been suggested as an alternative to 
using TF gene expression in inference tasks [101], since 
a transcription factor’s expression level alone might not 
reflect the actual activity of a TF (driven for instance by 
its phosphorylation state). To evaluate whether TFAs 
could improve our inference, we estimated TFAs for all 
TFs based on their expression and ChIP-seq derived 
TFBS from ReMap [62] and ENCODE [64, 65] (see Sec-
tion  2). We applied the same cross cohort replication 
strategy as above and compared MCCs from the TFA 
based analysis to the previous results using a one-sided 
Wilcoxon test. Figure 2D shows the results of TFA (light 
gray boxes) versus gene expression (dark gray boxes)-
based analysis in terms of MCC for all available hotspots. 
For all models but gLASSOP , TFAs yield a significantly 
higher MCC (Wilcoxon test P < 0.05 ) as compared to 
using the original TF expression data (see also Additional 
File 1: Table S10).

Detailed investigation of real world data was there-
fore focused on networks obtained from gLASSOP and 
BDgraphP and TF expression was substituted by TFA 
estimates for all subsequent analyses.

Replication of previous findings
Before seeking new mechanistic insights and generat-
ing novel hypotheses from trans-QTL hotspots we first 
checked whether our approach can replicate previous 
findings. Hawe et  al. [12] inferred gene regulatory net-
works from trans-meQTL hotspots using a two-step 
inference approach, whereas our approach simultane-
ously integrates all functional data relying on PPI and 
ChIP-seq information as prior knowledge. We thereby 
avoid the need for post-hoc correlation testing of e.g., 
SNP-gene and CpG-gene edges. For the comparison, we 
extracted three of their reported networks and evaluated 
the overlap with the networks inferred in this study.

Overall, the comparisons indicate relatively strong 
concordance between the two approaches with MCCs 
of 0.52, 0.8, and 0.66 (see Additional File 1: Table  S11 
for details). Moreover, for all three networks, our 
simultaneous inference approach yielded more edges 
and nodes than the two-step approach (39%, 34%, 
and 22% novel edges and 7%, 12%, and 47% additional 
nodes for rs9859077, rs730775, and rs7783715, respec-
tively), which might have been missed by the two-step 
approach as it relies on known PPI and ChIP-seq infor-
mation. Although the total number of inferred edges 
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with ChIP-seq prior information is relatively similar 
to the total number of edges without PPI and ChIP-
seq prior evidence (e.g., 155 vs 106 for the rs9859077 
locus), replication is much higher for edges with ChIP-
seq evidence (e.g., 84% vs 5% for the rs9859077 locus). 
This is a likely consequence of the choice of priors: a 
fixed high value for ChIP-seq evidence, while neighbor-
ing genes without PPI evidence only received the small 
pseudo prior (see Section 2).

Figure  3 contrasts the two networks obtained for 
the rs730775 hotspot using (1) the two-step approach 
by Hawe et  al. [12] and (2) the network inferred in 
this study using gLASSOP . Orange edges show repli-
cated and green edges indicate novel edges. In Hawe 
et al. [12], the authors described a regulatory network 
involving the rs730775 SNP connected via NFKBIE 
to NFKB1 which connects to the trans-CpG sites. 
This main pathway is also discovered in our approach 
(i.e.,  rs730775 ↔ NFKBIE ↔ NFKB1 ↔ CpG sites) in 
addition to some of the initially reported TFs (blue 
nodes). Of these, NFKB1 is connected to most of the 
trans CpGs (69%, 24 out of 35) as was the case in the 
original network. However, we also identify patterns 
of CpG genes (green nodes) connected to the TFs 
which were not previously identified. Overall, the 
integrated approach using prior information leads to 
good replication of previous networks and includes 
novel connections leading to potential new insights in 
target gene regulation.

A trans regulatory network for a schizophrenia 
susceptibility locus
In order to demonstrate the effectiveness of our approach 
in getting mechanistic insights from trans -QTL associa-
tions, we inferred networks for all meQTL [12] and eQTL 
[9] hotspots using whole blood data from the KORA and 
LOLIPOP cohorts and the prior based gLASSOP and 
BDgraphP models (see Section 2, all networks are listed 
in Additional File 2: Table S3). Based on the GWAS cata-
log (v1.0.2, [83]), graph properties, and a custom graph 
score (see Section 2), we prioritized a trans acting locus 
that has previously been associated with schizophrenia 
(SCZ).

The network involves the trans-eQTL locus around the 
rs9469210 (alias rs9274623 according to [84]) SNP in the 
human leukocyte antigen (HLA) region on chromosome 
6 shown in Fig. 4A.

rs9274623 has been associated with SCZ [102] and 
is a cis-eQTL for several of its directly connected SNP-
genes (e.g., PBX2, RNF5, and HLA-DQA1) in the eQTL-
Gen study. The network inference prioritized the two 
genes RNF5 and AGPAT1, which connect the genetic 
locus to the associated trans genes. RNF5 showed differ-
ential expression for SCZ cases vs controls in addition to 
its expression being associated with an additional inde-
pendent SCZ susceptibility SNP (rs3132947, R2 = 0.14 
in 1000 genomes Europeans) located in the HLA locus 
[103]. AGPAT1 is involved in regulation of phospholipids 
[104], the dysregulation of which has been implicated in 

Fig. 3  Comparison of the random walk based network reported in [12] and the network inferred from functional omics data in this study for 
the rs730775 locus. Shown is the complete network constructed from the omics data, edge color indicates replication/novelty. Orange edges: 
replicated with respect to the random walk network. Green edges: novel in our network. White box: SNP; pink nodes: SNP-genes; blue nodes: TFs; 
brown boxes: CpGS; green nodes: CpG-genes
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schizophrenia before [105]. In addition, several genetic 
variants in AGPAT1 intronic regions have previously 
been associated with SCZ [106–108]. TCF12 is a paralog 
of TCF4 and TCF3 which are known E-box transcrip-
tion factors and are expressed in multiple brain regions 
[109]. TCF4 loss-of-function mutations are the cause of 
Pitt-Hopkins syndrome (a syndrome causing intellectual 
disability and behavioral changes amongst other symp-
toms) [110], and regulatory SNPs relating to TCF4 have 
been associated with SCZ [111, 112]. The transcription 
factor SPI1 (PU.1) is linked to Alzheimer’s disease likely 
by impacting neuroinflammatory response [113] and was 
found to interact with its network neighbor RUNX1 in 
modulating gene expression [114]. Moreover, RUNX1 has 
been implicated in rheumatoid arthritis, a disease nega-
tively associated with SCZ and which hence might share 
susceptibility genes with SCZ [115, 116]. Interestingly, 
several genes encoded in the HLA locus, which has been 
implicated in SCZ and other psychiatric and neurologi-
cal disorders [117–120], were picked up by our inference 
downstream of the identified transcription factors (HLA-
DOA, HLA-DOB, HLA-DRB1, HLA-DMA, and BRD2). 
The NFKB1 pathway, represented in the network through 
NFKB1, has further been recognized as an important 
regulatory and developmental factor of neural processes 
and was found to be dysregulated in patients with SCZ 
[121]. Finally, 10 of the 40 discovered trans genes of the 

locus are connected to the SNP via the selected TFs. Of 
these, SH3BGRL3 [122] has already been linked to SCZ 
and PSEN1 [123], B9D2 [124], and CXCR5 [125] as well 
as DNAJB2 [126] and were implicated in other neuro-
logical disorders. In addition, the trans gene RNF114 has 
previously been shown to play a role in the NFKB1 path-
way [127]. A formal colocalization analysis using fastEN-
LOC [93] showed evidence of a common causal variant 
underlying the SCZ GWAS signal [128] and each of the 
trans -eQTL of TMEM44, PSEN1, DNAJB2, and CD6 
(SNP-level colocalization probability of 0.95, 0.92, 0.87, 
and 0.42, respectively; see Section 2 and Additional File 
1: Fig. S11).

Our approach highlighted a potential regulatory path-
way involving diverse genes related to SCZ and other 
neurological disorders. While some of the genes were 
not previously reported in this specific disease context 
(e.g.,  CD6, BRD2, DEF8), their association to this net-
work indicates a potential role in SCZ pathogenesis. The 
colocalization analysis further hints at a potential causal 
relationship between these genes and SCZ.

Application to GTEx skeletal muscle tissue
All above analyses were focused on whole-blood data. 
However, the proposed strategy can be applied to data 
from any biological context. To demonstrate this, we 
investigated the recently published trans -eQTLs from 

Fig. 4  Inferred networks for the schizophrenia susceptibility locus rs9274623 obtained from eQTLgen (A) and the rs9318186 locus obtained 
from GTEx (B). The white boxes indicate sentinel SNPs, pink ovals indicate SNP-Genes, blue ovals transcription factors, and white ones shortest 
path-derived genes. Light green ovals represent genes trans-associated to the SNP. Black edges were inferred during network inference. In addition 
to being inferred, colored edges indicate ChIP-seq protein-DNA binding evidence (green), protein-protein interaction in the BioGrid (purple), and 
whether or not a gene is encoded in cis of the linked entity (blue)
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the GTEx v8 release [44, 59, 61]. We pinpoint a single 
LD block in Skeletal Muscle tissue, but not in other tis-
sues, which is a trans-eQTL hotspot according to our 
definition (see Section  2) and for which we inferred 
regulatory networks. Since we ca not use the GTEx 
derived prior information to infer networks in GTEx 
tissue, we set out to curate muscle tissue specific pri-
ors from independent datasets. We utilized muscle tis-
sue based eQTL from Scott et al. (2016) [85] and gene 
expression data curated from the ARCHS4 [47] data-
base and generated tissue specific TFBS using factor-
Net [87] on DNAse-seq data obtained from ENCODE 
[64–66] (see Section  2). The resulting network for the 
gLASSOP model is shown in Fig. 4B.

The genetic variant rs9318186 is a cis-eQTL of KLF5 
in GTEx v8 skeletal muscle ( P = 6.1x10−37 ), and a 
proxy of it ( R2 = 0.88 ) has been associated with lean 
body mass (LBM). KLF5 itself, too, has been associ-
ated with LBM in a transcriptome-wide association 
study integrating GWAS results with gene expres-
sion [129] and with lipid metabolism in KLF5 knock-
out mice [130]. In addition, several other genes in the 
network have been associated with related pheno-
types: both HDAC1 and HDAC2 have been found to 
control skeletal muscle homeostasis in mice [131], 
work together with SIN3B in the SIN3 core complex 
to regulate gene expression, and are involved in mus-
cle development [132]. TATA-binding protein (TBP) 
is a well-known transcription factor and important for 
the transcriptional regulation of many eukaryotic genes 
[133]. The trans gene SYNC was found to interact with 
dystrobrevin (DMD gene) in order to maintain muscle 
function (during contraction) in mice as well as being 
associated with neuromuscular disease [134, 135]. In 
addition, in Seim et al. (2018) [136], the authors investi-
gated the relationship between obesity and cancer sub-
types and found that PHETA1/FAM109A expression is 
associated with body mass index (BMI) in esophageal 
carcinoma in data from The Cancer Genome Atlas 
(TCGA). PHOSPHO1 has been found to be involved in 
metabolism, specifically in energy homeostasis [137] 
and has also been associated via DNA methylation 
with BMI [138] and HDL levels, which in turn have 
been negatively associated with LBM [139]. Dayeh et al. 
(2016) [140] further showed decreased DNA methyla-
tion at the PHOSPHO1 locus in skeletal muscle of dia-
betic vs. non-diabetic samples. The remaining gene in 
the network (CREM) has not yet been described in the 
broader context of LBM but a GWAS meta-analysis 
executed by Wang et al. (2014) [141] hinted at associa-
tion of a CREM SNP (rs1531550, P = 1.88x10−6 ) with 
elite sprinter status. These results suggest that KLF5 
may exert its specific functions through transcriptional 

regulation via the SIN3 core complex including TBP, 
with a potential involvement of CREM, of the trans 
genes PHOSPHO1, SYNC, and PHETA1/FAM109A.

Discussion
In this study, we introduced a Bayesian framework for 
the inference of undirected regulatory networks under-
lying molecular trans-QTL hotspots across multi-omics 
data types using existing prior knowledge. We compiled 
a comprehensive set of context specific network edge pri-
ors from diverse biological databases and applied these in 
a multi-omics context on (1) simulated data and (2) real-
world cohort data.

We followed recently published guidelines [142] to 
benchmark state-of-the-art network inference methods.

Based on the simulations, we observed that increasing 
the degree of error in the prior information significantly 
reduces method performance. Above 30% of incorrect 
prior edges, the performance for BDgraphP is inferior 
to the performance when not using the prior. This indi-
cates that low levels of errors in edge priors still improve 
network inference, results which are in line with, e.g., 
Wang et  al. (2013) [36], who used a modified graphical 
lasso approach, Christley et  al. (2009) [33], who used 
an regularized ODE model and Greenfield et  al. (2013) 
[32], who used a Bayesian regression framework. Both 
BDgraphP and gLASSOP outperform other methods, spe-
cifically also in recovering mixed edges between discrete 
SNP allele dosage and continuous gene expression levels. 
While BDgraphP shows overall better performance than 
gLASSOP , the graphical lasso exhibits much lower run-
time which can be an important practical consideration. 
In addition, prior based methods show better replication 
across different cohorts as compared to prior agnostic 
methods. While replication performance across cohorts 
might be driven by strong prior information (i.e., prior 
based methods tend to replicate prior information), we 
could show that replication is driven by both the func-
tional genomics data and prior information (Additional 
File 1, Fig. S10). This shows that curated priors help to 
obtain more stable and confident results as compared 
to using functional data alone. Our simulation and rep-
lication results provide a comprehensive benchmark of 
established network inference methods and suggest that 
priors should be integrated in network inference tasks 
wherever possible.

Based on the benchmarking, we choose BDgraphP and 
gLASSOP for investigation of real-world cohort data. We 
reproduced several networks from a previous step-wise 
network inference approach  [12]. Moreover, we were 
able to find additional connections that could not be 
detected by design of the previous approach, which only 
assessed established PPI and protein-DNA interactions. 
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In contrast, our integrated approach considers all edges 
regardless of available prior evidence. Therefore, asso-
ciations will emerge if the evidence in the functional 
data alone or in addition to the prior evidence is strong 
enough.

We highlight a novel regulatory network for the schizo-
phrenia (SCZ) susceptibility HLA locus. The haplotype 
structure of the HLA locus warrants caution for the inter-
pretation of the candidate genes based on cis-eQTL. Irre-
spective of the haplotype structure, our candidates RNF5 
and AGPAT1 are defined by their connections in the net-
work to the trans genes and therefore independently of 
the cis-eQTL. Expanding on similar previous observations 
based on trans-eQTL [9], the integrated network analysis 
including trans-eQTL genes suggests RNF5 and AGPAT1 
as potential candidate genes which was not possible using 
cis-eQTL alone. Moreover, we observed strong evidence 
for colocalization of the genetic variants underlying the 
disease and the molecular traits. As the network for this 
locus was derived from whole-blood data, it is important 
to assess how these effects translate to tissues more rel-
evant for schizophrenia. Generally, eQTL effects correlate 
strongly between blood and brain tissue [143] and conse-
quently also networks building upon these genetic effects 
may translate between tissues.

To show that our approach can be applied across dif-
ferent tissues and technologies, we analyzed a skeletal 
muscle trans-eQTL hotspot from GTEx associated with 
lean body mass. The genes linked in the inferred network 
are overall coherent with the observed phenotype at this 
trans-acting locus (e.g., genes involved in lipid metabo-
lism and skeletal muscle homeostasis [129–131, 135, 
138]) and suggest involvement of novel genes.

Several practical considerations arise from our find-
ings: first, a strong emphasis should be given to curating 
high quality continuous prior information from public 
biological data to keep error levels low. Our simulation 
results clearly demonstrated that prior information is 
only beneficial when the proportion of incorrect edges 
does not exceed 30% (Fig. 2B, Additional File 1: Fig. S3A). 
To ensure low error rates, one might consider using only 
experimentally validated protein-protein interactions or 
high-quality gene expression data to generate priors as 
the impact of missing edges is less detrimental than that 
of wrong edges (Additional File 1: Fig. S8). However, in 
line with literature observations [99, 100], the compari-
son of different reference networks showed relatively low 
overlap (Additional File 1: Table S9), which might lead to 
an incomplete or small set of priors. In this case, glasso 
might be considered the model of choice based on our 
prior completeness analysis (Additional File  1, Fig.  S6). 
Next, the definition of hotspot locus sets and priors in 
this study mitigates the N << P problem. Using our 

approach, the total number of entities (variables) going 
into the network inference typically does not exceed the 
total number of available samples in our data. This bene-
fit of the locus sets comes with the risk of missing certain 
genes needed to fully describe the trans effects. However, 
our strategy of curating a stringent set of relevant genes 
including transcription factors should enable most key 
regulator genes to enter the inference process and yields 
parsimonious and easily interpretable results. Finally, 
context (e.g., tissue) specific TFBS are not yet available 
for a large number of transcription factors. This poten-
tially limits our approach to fewer applications. How-
ever, novel developments to predict TFBS from context 
specific open chromatin information (e.g., factorNet [87]) 
can help in carrying this strategy to more contexts as we 
showed for the GTEx skeletal muscle locus.

Conclusions
This study describes a novel strategy for using compre-
hensive edge-wise priors from biological data to improve 
network inference for trans-QTL hotspots from human 
population scale multi-omics data. This facilitates the 
investigation of their underlying regulatory networks 
and enables the generation of novel mechanistic hypoth-
eses for disease associated genetic loci. Moreover, we 
report a rigorous benchmark of state-of-the-art network 
inference methods for this task both in simulated and 
real-world data and highlight the benefit of including bio-
logical prior information to guide network inference.
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