78 research outputs found

    Artemether-Lumefantrine versus Dihydroartemisinin-Piperaquine for Treatment of Uncomplicated Plasmodium falciparum Malaria in Children Aged Less than 15 Years in Guinea-Bissau - An Open-Label Non-Inferiority Randomised Clinical Trial

    Get PDF
    Background Artemether-lumefantrine (AL) was introduced for treatment of uncomplicated malaria in Guinea-Bissau in 2008. Malaria then resurged and recurrent malaria after treatment with AL and stock-outs of AL were common. This study therefore aimed to assess the efficacy of AL and identify an alternative second line antimalarial. Dihydroartemisinin-piperaquine (DP) was chosen as it has been shown to be safe and efficacious and to reduce the incidence of recurrent malaria. Methods and Findings In a multicentre randomised open-label non-inferiority clinical trial, AL or DP were given over 3 days to children aged 6 months-15 years with uncomplicated P. falciparummonoinfection. Intake was observed and AL was given with milk. Children were seen on days 0, 1, 2 and 3 and then weekly days 7-42. Recurring P. falciparumwere classified as recrudescence or new infections by genotyping. Between November 2012 and July 2015, 312 children were randomised to AL (n = 155) or DP (n = 157). The day 42 PCR adjusted per protocol adequate clinical and parasitological responses were 95% and 100% in the AL and DP groups respectively, Mantel-Haenszel weighted odds ratio (OR) 0.22 (95% CI 0-0.68), p = 0.022. In a modified intention to treat analysis in which treatment failures day 0 and reinfections were also considered as treatment failures adequate clinical and parasitological responses were 94% and 97% (OR 0.42 [95% CI, 0.13-1.38], p = 0.15). Parasite clearance and symptom resolution were similar with both treatments. Conclusions Both treatments achieved the WHO recommended efficacy for antimalarials about to be adopted as policy. DP was not inferior to AL for treatment of uncomplicated P. falciparum malaria in Guinea-Bissau

    Prevalence of resistance associated polymorphisms in Plasmodium falciparum field isolates from southern Pakistan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scarce data are available on <it>Plasmodium falciparum </it>anti-malarial drug resistance in Pakistan. The aim of this study was, therefore, to determine the prevalence of <it>P. falciparum </it>resistance associated polymorphisms in field isolates from southern Pakistan.</p> <p>Methods</p> <p>Blood samples from 244 patients with blood-slide confirmed <it>P. falciparum </it>mono-infections were collected between 2005-2007. Single nucleotide polymorphisms in the <it>P. falciparum </it>chloroquine resistance transporter (<it>pfcrt </it>K76T), multi drug resistance (<it>pfmdr1 </it>N86Y), dihydrofolate reductase (<it>pfdhfr </it>A16V, N51I, C59R, S108N, I164L) and dihydropteroate synthetase (<it>pfdhps </it>A436S, G437A and E540K) genes and <it>pfmdr1 </it>gene copy numbers were determined using PCR based methods.</p> <p>Results</p> <p>The prevalence of <it>pfcrt </it>76T and <it>pfmdr1 </it>86Y was 93% and 57%, respectively. The prevalence of <it>pfdhfr </it>double mutations 59R + 108N/51R + 108N was 92%. The <it>pfdhfr </it>triple mutation (51I, 59R, 108N) occurred in 3% of samples. The <it>pfdhfr </it>(51I, 59R, 108N) and <it>pfdhps </it>(437G, 540E) quintuple mutation was found in one isolate. <it>Pfdhps </it>437G was observed in 51% and 540E in 1% of the isolates. One isolate had two <it>pfmdr1 </it>copies and carried the <it>pfmdr1 </it>86Y and <it>pfcrt </it>76T alleles.</p> <p>Conclusions</p> <p>The results indicate high prevalence of <it>in vivo </it>resistance to chloroquine, whereas high grade resistance to sulphadoxine-pyrimethamine does not appear to be widespread among <it>P. falciparum </it>in southern Pakistan.</p

    Genetic diversity among Plasmodium falciparum field isolates in Pakistan measured with PCR genotyping of the merozoite surface protein 1 and 2

    Get PDF
    Background:The genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Pakistan. This study aimed to establish molecular characterization of P. falciparum field isolates in Pakistan measured with two highly polymorphic genetic markers, i.e. the merozoite surface protein 1 (msp-1) and 2 (msp-2).Methods:Between October 2005 and October 2007, 244 blood samples from Patients with symptomatic blood-slide confirmed P. falciparum mono-infections attending the Aga Khan University Hospital, Karachi, or its collection units located in Sindh and Baluchistan provinces, Pakistan were collected. The genetic diversity of P. falciparum was analysed by length polymorphism following gel electrophoresis of DNA products from nested polymerase chain reactions (PCR) targeting block 2 of msp-1 and block 3 of msp-2, including their respective allelic families KI, MAD 20, RO33, and FC27, 3D7/IC.Results:A total of 238/244 (98%) Patients had a positive PCR outcome in at least one genetic marker, the remaining six were excluded from analysis. A majority of Patients had monoclonal infections. Only 56/231 (24%) and 51/236 (22%) carried multiple P. falciparum genotypes in msp-1 and msp-2, respectively. The estimated total number of genotypes was 25 msp-1 (12 KI, 8 MAD20, 5 RO33) and 33 msp-2 (14 FC27, 19 3D7/IC).Conclusion:This is the first report on molecular characterization of P. falciparum field isolates in Pakistan with regards to multiplicity of infection. The genetic diversity and allelic distribution found in this study is similar to previous reports from India and Southeast Asian countries with low malaria endemicity

    Multiplex PCR detection of Cryptosporidium sp, Giardia lamblia and Entamoeba histolytica directly from dried stool samples from Guinea-Bissauan children with diarrhoea

    Get PDF
    Background: In developing countries, diarrhoea is the most common cause of death for children under five years of age, with Giardia lamblia, Cryptosporidium and Entamoeba histolytica as the most frequent pathogenic parasites. Traditional microscopy for stool parasites has poor sensitivity and specificity, while new molecular methods may provide more accurate diagnostics. In poor regions with sample storage hampered by uncertain electricity supply, research would benefit from a method capable of analysing dried stools. Methods: A real-time multiplex PCR method with internal inhibition control was developed for detecting Giardia lamblia, Cryptosporidium hominis/parvum and Entamoeba histolytica directly from stool specimens. Applicability to dried samples was checked by comparing with fresh ones in a small test material. Finally, the assay was applied to dried specimens collected from Guinea-Bissauan children with diarrhoea. Results: The PCR's analytical sensitivity limit was 0.1 ng/ml for G. lamblia DNA, 0.01 ng/ml for E. histolytica DNA and 0.1 ng/ml for Cryptosporidium sp. In the test material, the assay performed similarly with fresh and dried stools. Of the 52 Guinea-Bissauan samples, local microscopy revealed a parasite in 15%, while PCR detected 62% positive for at least one parasite: 44% of the dried samples had Giardia, 23% Cryptosporidium and 0% E. histolytica. Conclusions: Our new multiplex real-time PCR for protozoa presents a sensitive method applicable to dried samples. As proof of concept, it worked well on stools collected from Guinea-Bissauan children with diarrhoea. It provides an epidemiological tool for analysing dried specimens from regions poor in resources.Peer reviewe

    Influence of consecutive-day blood sampling on polymerase chain reaction-adjusted parasitological cure rates in an antimalarial-drug trial conducted in Tanzania

    Get PDF
    We assessed the influence that consecutive-day blood sampling, compared with single-day blood sampling, had on polymerase chain reaction (PCR)-adjusted parasitological cure after stepwise genotyping of merozoite surface proteins 2 (msp2) and 1 (msp1) in 106 children in Tanzania who had uncomplicated falciparum malaria treated with either sulfadoxine-pyrimethamine or artemether- lumefantrine; 78 of these children developed recurrent parasitemia during the 42-day follow-up period. Initial msp2 genotyping identified 27 and 33 recrudescences by use of single- and consecutive-day sampling, respectively; in subsequent msp1 genotyping, 17 and 21 of these episodes, respectively, were still classified as recrudescences; these results indicate a similar sensitivity of the standard single-day PCR protocol - that is, 82% (27/33) and 81% (17/21), in both genotyping steps. Interpretation of PCR-adjusted results will significantly depend on methodology. © 2007 by the Infectious Diseases Society of America. All rights reserved

    Single nucleotide polymorphisms in Plasmodium falciparum V type H+ pyrophosphatase gene (pfvp2) and their associations with pfcrt and pfmdr1 polymorphisms

    Get PDF
    "Uncorrected proof"BACKGROUND: Chloroquine resistance in Plasmodium falciparum malaria has been associated with pfcrt 76T (chloroquine resistance transporter gene) and pfmdr1 86Y (multidrug resistance gene 1) alleles. Pfcrt 76T enables transport of protonated chloroquine out of the parasites digestive vacuole resulting in a loss of hydrogen ions (H(+)). V type H(+) pyrophosphatase (PfVP2) is thought to pump H(+) into the digestive vacuole. This study aimed to describe the geographic distribution of single nucleotide polymorphisms in pfvp2 and their possible associations with pfcrt and pfmdr1 polymorphisms. METHODS: Blood samples from 384 patients collected (1981-2009) in Honduras (n=35), Colombia (n=50), Liberia (n=50), Guinea Bissau (n=50), Tanzania (n=50), Iran (n=50), Thailand (n=49) and Vanuatu (n=50) were analysed. The pfcrt 72-76 haplotype, pfmdr1 copy numbers, pfmdr1 N86Y and pfvp2 V405I, K582R and P711S alleles were identified using PCR based methods. RESULTS: Pfvp2 was amplified in 344 samples. The pfvp2 allele proportions were V405 (97%), 405I (3%), K582 (99%), 582R (1%), P711 (97%) and 711S (3%). The number of patients with any of pfvp2 405I, 582R and/or 711S were as follows: Honduras (2/30), Colombia (0/46), Liberia (7/48), Guinea-Bissau (4/50), Tanzania (3/48), Iran (3/50), Thailand (1/49) and Vanuatu (0/31). The alleles were most common in Liberia (P=0.01) and Liberia+Guinea-Bissau (P=0.01). The VKP haplotype was found in 189/194 (97%) and 131/145 (90%) samples harbouring pfcrt 76T and pfcrt K76 respectively (P=0.007). CONCLUSIONS: The VKP haplotype was dominant. Most pfvp2 405I, 582R and 711S SNPs were seen where CQ resistance was not highly prevalent at the time of blood sampling possibly due to greater genetic variation prior to the bottle neck event of spreading CQ resistance. The association between the pfvp2 VKP haplotype and pfcrt 76T, which may indicate that pfvp2 is involved in CQ resistance, should therefore be interpreted with caution.This work was supported by Swedish International Development Cooperation Agency, Department for research Cooperation (Sida-SAREC Contribution no 75007082/03) and Sigurd och Elsa Goljes Minne Fund (project No. LA2010-0537). MIV is recipient of Post Doctoral fellowship from Fundacao para a Ciencia e Tecnologia (FCT)/Ministerio da Ciencia e Ensino Superior, Portugal - MCES (ref. SFRH/BPD/76614/2011). JU has a postdoctoral position funded by Stockholms lans landsting

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    Get PDF
    Background: In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods: Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results: Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion: The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.Swedish International Development Cooperation Agency, Department for research Cooperation (Sida-SAREC) [75007082/03]info:eu-repo/semantics/publishedVersio
    corecore