10 research outputs found

    Mass spectral molecular networking to profile the metabolome of biostimulant bacillus strains

    Get PDF
    Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly contribute to plant growth and development through various mechanisms activated by plant-PGPR interactions. However, a complete understanding of the biochemistry of the PGPR and microbial intraspecific interactions within the consortia is still enigmatic. Such complexities constrain the design and use of PGPR formulations for sustainable agriculture. Therefore, we report the application of mass spectrometry (MS)-based untargeted metabolomics and molecular networking (MN) to interrogate and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus, B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their consortium. The results revealed differential and diverse chemistries in the four Bacillus strains when grown separately, and also differing from when grown as a consortium. MolNetEnhancer networks revealed 11 differential molecular families that are comprised of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were characterized by the high abundance of surfactins, whereas B. licheniformis strains were characterized by the unique presence of lichenysins. Thus, this work, applying metabolome mining tools, maps the microbial chemical space of isolates and their consortium, thus providing valuable insights into molecular information of microbial systems. Such fundamental knowledge is essential for the innovative design and use of PGPR-based biostimulants

    A metabolomic landscape of maize plants treated with a microbial biostimulant under well-watered and drought conditions

    Get PDF
    Microbial plant biostimulants have been successfully applied to improve plant growth, stress resilience and productivity. However, the mechanisms of action of biostimulants are still enigmatic, which is the main bottleneck for the fully realization and implementation of biostimulants into the agricultural industry. Here, we report the elucidation of a global metabolic landscape of maize (Zea mays L) leaves in response to a microbial biostimulant, under well-watered and drought conditions. The study reveals that the increased pool of tricarboxylic acid (TCA) intermediates, alterations in amino acid levels and differential changes in phenolics and lipids are key metabolic signatures induced by the application of the microbial-based biostimulant. These reconfigurations of metabolism gravitate toward growth-promotion and defense preconditioning of the plant. Furthermore, the application of microbial biostimulant conferred enhanced drought resilience to maize plants via altering key metabolic pathways involved in drought resistance mechanisms such as the redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodeling. For the first time, we show key molecular events, metabolic reprogramming, activated by a microbial biostimulant for plant growth promotion and defense priming. Thus, these elucidated metabolomic insights contribute to ongoing efforts in decoding modes of action of biostimulants and generating fundamental scientific knowledgebase that is necessary for the development of the plant biostimulants industry, for sustainable food security

    Charting a New Sustainability Course for Luxury Game Lodges in Africa: A Hybrid Analytical Framework for Analysing the Key Coupled Human and Natural System Components

    Get PDF
    This paper introduces a hybrid analytical framework to comprehensively assess luxury game lodges within protected areas such as Coupled Human and Natural Systems (CHANS). The framework, developed through a synthesis of diverse Social-Ecological Systems (SES) models and tools, encompasses eight key steps, from sustainability context assessment to creating a tailored managerial-ecology model. By systematically analysing ecological, social, and economic dimensions, this framework empowers stakeholders to make informed decisions that balance biodiversity conservation, sustainability, and community engagement in luxury game lodge operations. Its practical application promises to advance the coexistence of ecotourism and environmental protection, fostering the long-term viability of these vital tourism destinations within protected areas

    Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions

    No full text
    The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant–plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants

    A Global Metabolic Map Defines the Effects of a Si-Based Biostimulant on Tomato Plants under Normal and Saline Conditions

    No full text
    The ongoing unpredictability of climate changes is exponentially exerting a negative impact on crop production, further aggravating detrimental abiotic stress effects. Several research studies have been focused on the genetic modification of crop plants to achieve more crop resilience against such stress factors; however, there has been a paradigm shift in modern agriculture focusing on more organic, eco-friendly and long-lasting systems to improve crop yield. As such, extensive research into the use of microbial and nonmicrobial biostimulants has been at the core of agricultural studies to improve crop growth and development, as well as to attain tolerance against several biotic and abiotic stresses. However, the molecular mechanisms underlying the biostimulant activity remain enigmatic. Thus, this study is a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics approach to unravel the hypothetical biochemical framework underlying effects of a nonmicrobial biostimulant (a silicon-based formulation) on tomato plants (Solanum lycopersium) under salinity stress conditions. This metabolomics study postulates that Si-based biostimulants could alleviate salinity stress in tomato plants through modulation of the primary metabolism involving changes in the tricarboxylic acid cycle, fatty acid and numerous amino acid biosynthesis pathways, with further reprogramming of several secondary metabolism pathways such as the phenylpropanoid pathway, flavonoid biosynthesis pathways including flavone and flavanol biosynthesis. Thus, the postulated hypothetical framework, describing biostimulant-induced metabolic events in tomato plants, provides actionable knowledge necessary for industries and farmers to, confidently and innovatively, explore, design, and fully implement Si-based formulations and strategies into agronomic practices for sustainable agriculture and food production

    Computational Metabolomics Tools Reveal Metabolic Reconfigurations Underlying the Effects of Biostimulant Seaweed Extracts on Maize Plants under Drought Stress Conditions

    No full text
    Drought is one of the major abiotic stresses causing severe damage and losses in economically important crops worldwide. Drought decreases the plant water status, leading to a disruptive metabolic reprogramming that negatively affects plant growth and yield. Seaweed extract-based biostimulants show potential as a sustainable strategy for improved crop health and stress resilience. However, cellular, biochemical, and molecular mechanisms governing the agronomically observed benefits of the seaweed extracts on plants are still poorly understood. In this study, a liquid chromatography–mass spectrometry-based untargeted metabolomics approach combined with computational metabolomics strategies was applied to unravel the molecular ‘stamps’ that define the effects of seaweed extracts on greenhouse-grown maize (Zea mays) under drought conditions. We applied mass spectral networking, substructure discovery, chemometrics, and metabolic pathway analyses to mine and interpret the generated mass spectral data. The results showed that the application of seaweed extracts induced alterations in the different pathways of primary and secondary metabolism, such as phenylpropanoid, flavonoid biosynthesis, fatty acid metabolism, and amino acids pathways. These metabolic changes involved increasing levels of phenylalanine, tryptophan, coumaroylquinic acid, and linolenic acid metabolites. These metabolic alterations are known to define some of the various biochemical and physiological events that lead to enhanced drought resistance traits. The latter include root growth, alleviation of oxidative stress, improved water, and nutrient uptake. Moreover, this study demonstrates the use of molecular networking in annotating maize metabolome. Furthermore, the results reveal that seaweed extract-based biostimulants induced a remodeling of maize metabolism, subsequently readjusting the plant towards stress alleviation, for example, by increasing the plant height and diameter through foliar application. Such insights add to ongoing efforts in elucidating the modes of action of biostimulants, such as seaweed extracts. Altogether, our study contributes to the fundamental scientific knowledge that is necessary for the development of a biostimulants industry aiming for a sustainable food security

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium

    No full text

    Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research

    Get PDF
    The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes
    corecore