221 research outputs found

    Prediction accuracy of fatigue-relevant load effects in an orthotropic deck

    Get PDF
    The accuracy of stress estimates in Orthotropic Bridge Decks (OBD) may be negatively impacted by the complex load transfer and asphalt properties. Yet, accurate stress estimates are crucial for optimal fatigue verifications. A field measurement and modelling study has been conducted to evaluate the accuracy of finite element (FE) models. The level of detail of the FE model resembled engineering practice. Measurements comprised of strains caused by normal flowing traffic and by single vehicles with known load. The study gave insight into the distribution of the transverse vehicle location, dynamic vehicle–bridge deck interaction, and the asphalt influence. Comparing with international guidelines, the prediction error of FE models of OBDs is on the edge of acceptable.<br/

    A human CD5+ B cell clone that secretes an idiotype-specific high affinity IgM monoclonal antibody.

    Get PDF
    We previously demonstrated the occurrence of a naturally arisen human anti-idiotypic B cell clone, that we transformed with EBV (EBV383). We show evidence that EBV383 not only expresses the CD5 surface Ag, but also contains the 2.7-kb mRNA transcript encoding this protein. In addition, we show the presence of the 3.6-kb mRNA precursor. Most Ig produced by CD5+ B cells are polyreactive natural IgM antibodies encoded by unmutated copies of germline VH genes. However, in this study we present data demonstrating the monoreactive high affinity character of the anti-idiotypic antibody (mAb383) produced by EBV383. These data are in agreement with our previous observations, showing that the VH chain of mAb383 is encoded by an extensive somatically mutated VHV gene in a way that is consistent with an Ag-driven immune response. A possible role for this remarkable anti-idiotypic antibody in the maintenance of B cell memory is discussed

    Risk factors for type 2 diabetes in groups stratified according to metabolic syndrome: a 10-year follow-up of The Tromsø Study

    Get PDF
    Many incident cases of type 2 diabetes do not fulfil the metabolic syndrome, which accordingly has been questioned both as a research and clinical tool. The aim of this study was to determine differences in risk factors for type 2 diabetes between groups with high or low metabolic score. The study population were 26,093 men and women attending the Tromsø Study in 1994, followed through 2005, and who did not have diabetes when entering the study. A total of 492 incident cases of type 2 diabetes were registered. A metabolic score was defined according to a modified version of the National Cholesterol Education Program Adult Treatment Panel III. For those fulfilling ≥ 3 metabolic score criteria, increasing age, body mass index (BMI), triglycerides and a family history of diabetes were independent predictors. Age, BMI, and triglycerides predicted type 2 diabetes more strongly in subjects with low metabolic score, whereas high HDL cholesterol was not protective in this low risk group. The risk associated with a positive family history was unaffected by level of metabolic score. In addition smoking, low education and in men also physical inactivity were independent risk factors only in those with low metabolic score. Adding these non-metabolic risk factors increased correct classification from an ROC area of 77.2 to 87.1% (P value < 0.0001). One half of the incident cases of type 2 diabetes were missed by using high metabolic score for risk prediction

    Protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools

    Get PDF
    Isogenic disease models, such as genetically engineered organoids, provide insight into the impact of genetic variants on organ function. Here, we present a protocol to create isogenic disease models from adult stem cell-derived organoids using next-generation CRISPR tools. We describe steps for single guide RNA (sgRNA) design and cloning, electroporation, and selecting electroporated cells. We then detail procedures for clonal line generation. Next-generation CRISPR tools do not require double-stranded break (DSB) induction for their function, thus simplifying in vitro disease model generation. For complete details on the use and execution of this protocol, please refer to Geurts et al.1,

    Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids

    Get PDF
    High-grade serous ovarian cancer (HG-SOC)—often referred to as a “silent killer”—is the most lethal gynecological malignancy. The fallopian tube (murine oviduct) and ovarian surface epithelium (OSE) are considered the main candidate tissues of origin of this cancer. However, the relative contribution of each tissue to HG-SOC is not yet clear. Here, we establish organoid-based tumor progression models of HG-SOC from murine oviductal and OSE tissues. We use CRISPR-Cas9 genome editing to introduce mutations into genes commonly found mutated in HG-SOC, such as Trp53, Brca1, Nf1 and Pten. Our results support the dual origin hypothesis of HG-SOC, as we demonstrate that both epithelia can give rise to ovarian tumors with high-grade pathology. However, the mutated oviductal organoids expand much faster in vitro and more readily form malignant tumors upon transplantation. Furthermore, in vitro drug testing reveals distinct lineage-dependent sensitivities to the common drugs used to treat HG-SOC in patients

    Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation

    Get PDF
    Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis

    Медицинские и социальные аспекты коммерческого секса

    Get PDF
    Представлены демографические, медицинские, психологические и социальные характеристики женщин, оказывающих платные сексуальные услуги. Обсуждается проблема легализации и регламентации проституции в контексте профилактики инфекций, передающихся половым путем, и заражения ВИЧ.Demographic, medical, psychological and social characteristics of women rendering sexual services are described. The problem of legalization and regulation of prostitution in the context of prevention of sexually transmitted infections and HIV is discussed

    Macrophage Depletion in Hypertensive Rats Accelerates Development of Cardiomyopathy

    Get PDF
    Inflammation contributes to the process of ventricular remodeling after acute myocardial injury. To investigate the role of macrophages in the chronic process of cardiac remodeling, they were selectively depleted by intravenous administration of liposomal clodronate in heart failure-prone hypertensive Ren-2 rats from the age of 7 until 13 weeks. plain liposomes were used for comparison. Liposomal clodronate treatment reduced the number of blood monocytes and decreased the number of macrophages in the myocardium. Compared to plain liposomes, liposomal clodronate treatment rapidly worsened left ventricular ejection function in hypertensive rats. Liposomal clodronate-treated Ren-2 rat hearts showed areas of myocyte loss with abundant inflammatory cell infiltration, predominantly comprising CD4 positive T lymphocytes. The current-study showed that lack of macrophages vas associated with earlier development of myocardial dysfunction in hypertensive rats. Modulation of macrophage function may be of value in the evolution of cardiomyopath
    corecore