9 research outputs found

    Digital analysis of cDNA abundance; expression profiling by means of restriction fragment fingerprinting

    Get PDF
    BACKGROUND: Gene expression profiling among different tissues is of paramount interest in various areas of biomedical research. We have developed a novel method (DADA, Digital Analysis of cDNA Abundance), that calculates the relative abundance of genes in cDNA libraries. RESULTS: DADA is based upon multiple restriction fragment length analysis of pools of clones from cDNA libraries and the identification of gene-specific restriction fingerprints in the resulting complex fragment mixtures. A specific cDNA cloning vector had to be constructed that governed missing or incomplete cDNA inserts which would generate misleading fingerprints in standard cloning vectors. Double stranded cDNA was synthesized using an anchored oligo dT primer, uni-directionally inserted into the DADA vector and cDNA libraries were constructed in E. coli. The cDNA fingerprints were generated in a PCR-free procedure that allows for parallel plasmid preparation, labeling, restriction digest and fragment separation of pools of 96 colonies each. This multiplexing significantly enhanced the throughput in comparison to sequence-based methods (e.g. EST approach). The data of the fragment mixtures were integrated into a relational database system and queried with fingerprints experimentally produced by analyzing single colonies. Due to limited predictability of the position of DNA fragments on the polyacrylamid gels of a given size, fingerprints derived solely from cDNA sequences were not accurate enough to be used for the analysis. We applied DADA to the analysis of gene expression profiles in a model for impaired wound healing (treatment of mice with dexamethasone). CONCLUSIONS: The method proved to be capable of identifying pharmacologically relevant target genes that had not been identified by other standard methods routinely used to find differentially expressed genes. Due to the above mentioned limited predictability of the fingerprints, the method was yet tested only with a limited number of experimentally determined fingerprints and was able to detect differences in gene expression of transcripts representing 0.05% of the total mRNA population (e.g. medium abundant gene transcripts)

    Translational Medicine Guide transforms drug development processes: the recent Merck experience.

    Get PDF
    Merck is implementing a question-based Translational Medicine Guide (TxM Guide) beginning as early as lead optimization into its stage-gate drug development process. Initial experiences with the TxM Guide, which is embedded into an integrated development plan tailored to each development program, demonstrated opportunities to improve target understanding, dose setting (i.e., therapeutic index), and patient subpopulation selection with more robust and relevant early human-based evidence, and increased use of biomarkers and simulations. The TxM Guide is also helping improve organizational learning, costs, and governance. It has also shown the need for stronger external resources for validating biomarkers, demonstrating clinical utility, tracking natural disease history, and biobanking

    326 The anti-TIGIT antibody M6223 induces significant anti-tumor efficacy and immune response via multiple mechanisms of action

    Get PDF
    BackgroundM6223 is a fully human antagonistic anti-T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) antibody in IgG1 format with Fc-mediated effector function.MethodsThe ability of M6223 to block the interaction of TIGIT with its ligands, CD155 and CD112, and the interaction of TIGIT with CD226 was determined by a flow cytometry-based binding assay. The anti-tumor efficacy, immune profile, and effector function of M6223 were investigated in syngeneic tumor models in huTIGIT knock-in mice. M6223 was either formatted with an effector competent mouse IgG2c constant region (M6223-muIgG2c) or formatted with effector null mouse IgG1-D256A constant region (M6223-muIgG1) as two versions of chimeric antibodies for the in vivo studies.ResultsM6223 dose-dependently blocked the binding of TIGIT to its ligands, including CD155 and CD112, thereby inhibiting a TIGIT-mediated immunosuppressive pathway. In addition, M6223 interrupted the interaction of TIGIT with the costimulatory receptor CD226. By blocking the interactions, the chimeric protein M6223-muIgG2c showed anti-tumor efficacy in multiple tumor models, including an MC38 tumor model (figure 1), and generated tumor antigen-specific long-term protective immunity in immunocompetent huTIGIT knock-in mice. M6223 monotherapy dose-dependently elevated the ratio of CD8+ cytotoxic T cells to regulatory T cells and the ratio of CD226 to TIGIT expression in immune cells in the tumor microenvironment. We also found that M6223 selectively depleted suppressive and exhausted TIGIT+ immune cell subsets and the anti-tumor activity of effector null M6223-muIgG1 was significantly lost (p<0.0001), suggesting that Fc-mediated effector function contributes to M6223 anti-tumor activity. Antibody depletion studies demonstrated that CD8+ T cells and natural killer cells contributed to the anti-tumor activity of M6223 in a complementary manner.Abstract 326 Figure 1M6223-muIgG2c displayed dose-dependent anti-tumor efficacy. M6223-muIgG2c displayed dose-dependent anti-tumor efficacy in an MC38 tumor model in hTIGIT knock-in mice.ConclusionsGiven that TIGIT blockade can inhibit an immunosuppressive pathway as well as remove the suppression on a costimulatory pathway, M6223 has the potential to induce an anti-tumor immune response by three complementary mechanisms: direct blockade of the TIGIT pathway, stimulation of CD226 dimerization/activation, and depletion of TIGIT+ immune subsets by Fc-mediated effector function. Our data demonstrate that these complementary mechanisms orchestrate the anti-tumor activity of M6223. A Phase I, first-in-human clinical trial (NCT04457778) is underway to determine the safety, tolerability, maximum tolerated dose and recommended dose for expansion of M6223 as a single agent (Part 1A) and in combination with bintrafusp alfa (Part 1B) in patients with metastatic or locally advanced solid unresectable tumors.Ethics ApprovalAll animal experiments were performed in accordance with EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA (protocol 17-008, 20-005) and Wuxi AppTec Animal Care and Use Committee (IACUC) guidelines

    Digital analysis of cDNA abundance; expression profiling by means of restriction fragment fingerprinting

    No full text
    Abstract Background Gene expression profiling among different tissues is of paramount interest in various areas of biomedical research. We have developed a novel method (DADA, Digital Analysis of cDNA Abundance), that calculates the relative abundance of genes in cDNA libraries. Results DADA is based upon multiple restriction fragment length analysis of pools of clones from cDNA libraries and the identification of gene-specific restriction fingerprints in the resulting complex fragment mixtures. A specific cDNA cloning vector had to be constructed that governed missing or incomplete cDNA inserts which would generate misleading fingerprints in standard cloning vectors. Double stranded cDNA was synthesized using an anchored oligo dT primer, uni-directionally inserted into the DADA vector and cDNA libraries were constructed in E. coli. The cDNA fingerprints were generated in a PCR-free procedure that allows for parallel plasmid preparation, labeling, restriction digest and fragment separation of pools of 96 colonies each. This multiplexing significantly enhanced the throughput in comparison to sequence-based methods (e.g. EST approach). The data of the fragment mixtures were integrated into a relational database system and queried with fingerprints experimentally produced by analyzing single colonies. Due to limited predictability of the position of DNA fragments on the polyacrylamid gels of a given size, fingerprints derived solely from cDNA sequences were not accurate enough to be used for the analysis. We applied DADA to the analysis of gene expression profiles in a model for impaired wound healing (treatment of mice with dexamethasone). Conclusions The method proved to be capable of identifying pharmacologically relevant target genes that had not been identified by other standard methods routinely used to find differentially expressed genes. Due to the above mentioned limited predictability of the fingerprints, the method was yet tested only with a limited number of experimentally determined fingerprints and was able to detect differences in gene expression of transcripts representing 0.05% of the total mRNA population (e.g. medium abundant gene transcripts).</p

    Identification and characterization of M6903, an antagonistic anti–TIM-3 monoclonal antibody

    No full text
    T cell immunoglobulin and mucin domain-3 (TIM-3) is an immune checkpoint that regulates normal immune responses but can be exploited by tumor cells to evade immune surveillance. TIM-3 is primarily expressed on immune cells, particularly on dysfunctional and exhausted T cells, and engagement of TIM-3 with its ligands promotes TIM-3-mediated T cell inhibition. Antagonistic ligand-blocking anti-TIM-3 antibodies have the potential to abrogate T cell inhibition, activate antigen-specific T cells, and enhance anti-tumor immunity. Here we describe M6903, a fully human anti-TIM-3 antibody without effector function and with high affinity and selectivity to TIM-3. We demonstrate that M6903 blocks the binding of TIM-3 to three of its ligands, phosphatidylserine (PtdSer), carcinoembryonic antigen cell adhesion-related molecule 1 (CEACAM1), and galectin 9 (Gal-9). These results are supported by an atomic resolution crystal structure and functional assays, which demonstrate that M6903 monotherapy enhanced T cell activation. This activation was further enhanced by the combination of M6903 with bintrafusp alfa, a bifunctional fusion protein that simultaneously blocks the transforming growth factor-β (TGF-β) and programmed death ligand 1 (PD-L1) pathways. M6903 and bintrafusp alfa combination therapy also enhanced anti-tumor efficacy in huTIM-3 knock-in mice, relative to either monotherapy. These in vitro and in vivo data, along with favorable pharmacokinetics in marmoset monkeys, suggest that M6903 as a monotherapy warrants further pre-clinical assessment and that M6903 and bintrafusp alfa may be a promising combination therapy in the clinic

    Correction to: 33rd Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2018)

    No full text
    10.1186/s40425-019-0519-yJOURNAL FOR IMMUNOTHERAPY OF CANCER7

    Correction to: 33rd Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2018)

    No full text
    After publication of this supplement [1, 2], it was brought to our attention that due to an error authors were missing in the following abstracts. This has now been included in this correction
    corecore