18 research outputs found

    Merits of Creating a Revised CTE National Research Agenda for 2020

    Full text link
    This article promotes the idea that clearly focused scholarly inquiry needs direction developed through a collaborative and informative process. The authors propose that the National CTE Research Agenda adopted in 2008 should be revised and updated to reflect the contemporary issues and policies of the career and technical education profession. The aim of this discussion is to propose a systematic research approach with the potential to influence policy for career and technical education. The challenge for our profession will be to create a united and informed agenda that will transform policy, promote innovation in scholarly endeavors, and foster improved outcomes for all CTE stakeholders

    Inherited germline TP53 mutation encodes a protein with an aberrant C-terminal motif in a case of pediatric adrenocortical tumor

    Get PDF
    Childhood adrenocortical tumor (ACT), a very rare malignancy, has an annual worldwide incidence of about 0.3 per million children younger than 15 years. The association between inherited germline mutations of the TP53 gene and an increased predisposition to ACT was described in the context of the Li-Fraumeni syndrome. In fact, about two-thirds of children with ACT have a TP53 mutation. However, less than 10% of pediatric ACT cases occur in Li-Fraumeni syndrome, suggesting that inherited low-penetrance TP53 mutations play an important role in pediatric adrenal cortex tumorigenesis. We identified a novel inherited germline TP53 mutation affecting the acceptor splice site at intron 10 in a child with an ACT and no family history of cancer. The lack of family history of cancer and previous information about the carcinogenic potential of the mutation led us to further characterize it. Bioinformatics analysis showed that the non-natural and highly hydrophobic C-terminal segment of the frame-shifted mutant p53 protein may disrupt its tumor suppressor function by causing misfolding and aggregation. Our findings highlight the clinical and genetic counseling dilemmas that arise when an inherited TP53 mutation is found in a child with ACT without relatives with Li-Fraumeni-component tumors

    Pemetrexed Induced Thymidylate Synthase Inhibition in Non-Small Cell Lung Cancer Patients: A Pilot Study with 3 '-Deoxy-3 '-[F-18]fluorothymidine Positron Emission Tomography

    Get PDF
    OBJECTIVES: Pemetrexed is a thymidylate synthase (TS) inhibitor and is effective in non-small cell lung cancer (NSCLC). 3'-deoxy-3'-[¹⁸F]fluorothymidine (¹⁸F-FLT), a proliferation marker, could potentially identify tumor specific TS-inhibition. The aim of this study was to investigate the effect of pemetrexed-induced TS-inhibition on ¹⁸F-FLT uptake 4 hours after pemetrexed administration in metastatic NSCLC patients. METHODS: Fourteen NSCLC patients underwent dynamic ¹⁸F-FLT positron emission tomography (PET) scans at baseline and 4 hours after the first dose of pemetrexed. Volumes of interest were defined with a 41%, 50% and 70% threshold of the maximum pixel. Kinetic analysis and simplified measures were performed. At one, two, four and six hours after pemetrexed, plasma deoxyuridine was measured as systemic indicator of TS-inhibition. Tumor response measured with response evaluation criteria in solid tumors (RECIST), time to progression (TTP) and overall survival (OS) were determined. RESULTS: Eleven patients had evaluable ¹⁸F-FLT PET scans at baseline and 4 hours after pemetrexed. Two patients had increased ¹⁸F-FLT uptake of 35% and 31% after pemetrexed, whereas two other patients had decreased uptake of 31%. In the remaining seven patients ¹⁸F-FLT uptake did not change beyond test-retest borders. In all patients deoxyuridine levels raised after administration of pemetrexed, implicating pemetrexed-induced TS-inhibition. ¹⁸F-FLT uptake in bone marrow was significantly increased 4 hours after pemetrexed administration. Six weeks after the start of treatment 5 patients had partial response, 4 stable disease and 2 progressive disease. Median TTP was 4.2 months (range 3.0-7.4 months); median OS was 13.0 months (range 5.1-30.8 months). Changes in ¹⁸F-FLT uptake were not predictive for tumor response, TTP or OS. CONCLUSIONS: Measuring TS-inhibition in a clinical setting 4 hours after pemetrexed revealed a non-systematic change in ¹⁸F-FLT uptake within the tumor. No significant association with tumor response, TTP or OS was observed

    Predicting Positive p53 Cancer Rescue Regions Using Most Informative Positive (MIP) Active Learning

    Get PDF
    Many protein engineering problems involve finding mutations that produce proteins with a particular function. Computational active learning is an attractive approach to discover desired biological activities. Traditional active learning techniques have been optimized to iteratively improve classifier accuracy, not to quickly discover biologically significant results. We report here a novel active learning technique, Most Informative Positive (MIP), which is tailored to biological problems because it seeks novel and informative positive results. MIP active learning differs from traditional active learning methods in two ways: (1) it preferentially seeks Positive (functionally active) examples; and (2) it may be effectively extended to select gene regions suitable for high throughput combinatorial mutagenesis. We applied MIP to discover mutations in the tumor suppressor protein p53 that reactivate mutated p53 found in human cancers. This is an important biomedical goal because p53 mutants have been implicated in half of all human cancers, and restoring active p53 in tumors leads to tumor regression. MIP found Positive (cancer rescue) p53 mutants in silico using 33% fewer experiments than traditional non-MIP active learning, with only a minor decrease in classifier accuracy. Applying MIP to in vivo experimentation yielded immediate Positive results. Ten different p53 mutations found in human cancers were paired in silico with all possible single amino acid rescue mutations, from which MIP was used to select a Positive Region predicted to be enriched for p53 cancer rescue mutants. In vivo assays showed that the predicted Positive Region: (1) had significantly more (p<0.01) new strong cancer rescue mutants than control regions (Negative, and non-MIP active learning); (2) had slightly more new strong cancer rescue mutants than an Expert region selected for purely biological considerations; and (3) rescued for the first time the previously unrescuable p53 cancer mutant P152L

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Structure–reactivity studies of 2-sulfonylpyrimidines allow selective protein arylation

    No full text
    Protein arylation has attracted much attention for developing new classes of bioconjugates with improved properties. Here, we have evaluated 2-sulfonylpyrimidines as covalent warheads for the mild, chemoselective, and metal free cysteine S-arylation. 2-Sulfonylpyrimidines react rapidly with cysteine, resulting in stable S-heteroarylated adducts at neutral pH. Fine tuning the heterocyclic core and exocyclic leaving group allowed predictable SNAr reactivity in vitro, covering &gt;9 orders of magnitude. Finally, we achieved fast chemo- and regiospecific arylation of a mutant p53 protein and confirmed arylation sites by protein X-ray crystallography. Hence, we report the first example of a protein site specifically S-arylated with iodo-aromatic motifs. Overall, this study provides the most comprehensive structure–reactivity relationship to date on heteroaryl sulfones and highlights 2-sulfonylpyrimidine as a synthetically tractable and protein compatible covalent motif for targeting reactive cysteines, expanding the arsenal of tunable warheads for modern covalent ligand discovery
    corecore