32 research outputs found

    Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    Full text link
    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6-μ\mum imaging data and observed Hα\alpha rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.Comment: 14 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Identification of Outflows and Candidate Dual Active Galactic Nuclei in SDSS Quasars at z=0.8-1.6

    Get PDF
    We present a sample of 131 quasars from the Sloan Digital Sky Survey at redshifts 0.8<z<1.6 with double peaks in either of the high-ionization narrow emission lines [NeV]3426 or [NeIII]3869. These sources were selected with the intention of identifying high-redshift analogs of the z<0.8 active galactic nuclei (AGN) with double-peaked [OIII]5007 lines, which might represent AGN outflows or dual AGN. Lines of high-ionization potential are believed to originate in the inner, highly photoionized portion of the narrow line region (NLR), and we exploit this assumption to investigate the possible kinematic origins of the double-peaked lines. For comparison, we measure the [NeV]3426 and [NeIII]3869 double peaks in low-redshift (z<0.8) [OIII]-selected sources. We find that [NeV]3426 and [NeIII]3869 show a correlation between line-splitting and line-width similar to that of [OIII]5007 in other studies; and the velocity-splittings are correlated with the quasar Eddington ratio. These results suggest an outflow origin for at least a subset of the double-peaks, allowing us to study the high-ionization gas kinematics around quasars. However, we find that a non-neligible fraction of our sample show no evidence for an ionization stratification. For these sources, the outflow scenario is less compelling, leaving the dual AGN scenario as a viable possibility. Finally, we find that our sample shows an anti-correlation between the velocity-offset ratio and luminosity ratio of the components, which is a potential dynamical argument for the presence of dual AGN. Therefore, this study serves as a first attempt at extending the selection of candidate dual AGN to higher redshifts.Comment: 19 pages, 12 figures, accepted for publication in The Astrophysical Journa

    Galaxy Rotation Curves in the Context of LambdaCDM Cosmology

    Get PDF

    Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations

    Full text link
    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-Mpc/h scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-Mpc/h cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 Mpc/h cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.Comment: 17 pages, 10 figures. Accepted, Ap

    Close Galaxy Pairs at z = 3: A Challenge to UV Luminosity Abundance Matching

    Get PDF
    We use a sample of z~3 Lyman Break Galaxies (LBGs) to examine close pair clustering statistics in comparison to LCDM-based models of structure formation. Samples are selected by matching the LBG number density and by matching the observed LBG 3-D correlation function of LBGs over the two-halo term region. We show that UV-luminosity abundance matching cannot reproduce the observed data, but if subhalos are chosen to reproduce the observed clustering of LBGs we are able to reproduce the observed LBG pair fraction, (Nc), defined as the average number of companions per galaxy. This model suggests an over abundance of LBGs by a factor of ~5 over those observed, suggesting that only 1 in 5 halos above a fixed mass hosts a galaxy with LBG-like UV luminosity detectable via LBG selection techniques. We find a total observable close pair fraction of 23 \pm 0.6% (17.7 \pm 0.5%) using a prototypical cylinder radius in our overdense fiducial model and 8.3 \pm 0.5% (5.6 \pm 0.2%) in an abundance matched model (impurity corrected). For the matched spectroscopic slit analysis, we find Ncs = 5.1\pm0.2% (1.68\pm0.02%), the average number of companions observed serendipitously in our for fiducial slits (abundance matched), whereas the observed fraction of serendipitous spectroscopic close pairs is 4.7\pm1.5 per cent using the full LBG sample and 7.1\pm2.3% for a subsample with higher signal-to-noise ratio. We show that the standard method of halo assignment fails to reproduce the break in the LBG close pair behavior at small scale. To reconcile these discrepancies we suggest that a plausible fraction of LBGs in close pairs with lower mass than our sample experience interaction-induced enhanced star formation that boosts their luminosity sufficiently to be detected in observational sample but are not included in the abundance matched simulation sample.Comment: 18 pages, 12 figures, 1 table, published in MNRA
    corecore