14 research outputs found

    Engineering local strain for single-atom nuclear acoustic resonance in silicon

    Full text link
    Mechanical strain plays a key role in the physics and operation of nanoscale semiconductor systems, including quantum dots and single-dopant devices. Here, we describe the design of a nanoelectronic device, where a single nuclear spin is coherently controlled via nuclear acoustic resonance (NAR) through the local application of dynamical strain. The strain drives spin transitions by modulating the nuclear quadrupole interaction. We adopt an AlN piezoelectric actuator compatible with standard silicon metal-oxide-semiconductor processing and optimize the device layout to maximize the NAR drive. We predict NAR Rabi frequencies of order 200 Hz for a single 123Sb nucleus in a wide region of the device. Spin transitions driven directly by electric fields are suppressed in the center of the device, allowing the observation of pure NAR. Using electric field gradient-elastic tensors calculated by the density-functional theory, we extend our predictions to other high-spin group-V donors in silicon and to the isoelectronic 73Ge atom

    Coherent electrical control of a single high-spin nucleus in silicon

    Full text link
    Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers1 and demonstrations of quantum search2 and factoring3 algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron4–6. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods7–9 relied on transducing electric signals into magnetic fields via the electron–nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single 123Sb (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 196110 but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots11,12 could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields

    Flow Measurements for Low Engine Order Excitations in a High Pressure Turbine Stage

    No full text
    This paper demonstrates and evaluates unique flow measurement results obtained in a high pressure test turbine, in order to analyze the effect of Low Engine Order (LEO) excitations. A stator was modified to induce LEO flow variations by either imposing a throat width variation or a blockage of the trailing edge cooling flow from some of the vanes. Laser Two Focus (L2F) and pressure probe measurements were performed at subsonic and transonic flow conditions, without and with the rotor installed and operated. Time resolved velocity data was obtained in front and inside of rotor passages covering the Low Engine Order variation period. The presented results evaluation focuses only on L2F measurements and show that the LEO variation of flow velocity and turbulence intensity is most visible in the gap between stator and rotor and at the first measurement location inside the rotor passage. The overall trend is that stator exit flow Mach numbers are higher behind the passages with smaller pitch and vice versa

    Unidirectional diploid-tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers

    No full text
    Hybridisation may lead to introgression of genes among species. Introgression may be bidirectional or unidirectional, depending on factors such as the demography of the hybridising species, or the nature of reproductive barriers between them. Previous microsatellite studies suggested bidirectional introgression between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) and also between B. pubescens and diploid B. pendula (silver birch) in Britain. Here we analyse introgression among these species using 51,237 variants in restriction-site associated (RAD) markers in 194 individuals, called with allele dosages in the tetraploids. In contrast to the microsatellite study, we found unidirectional introgression into B. pubescens from both of the diploid species. This pattern fits better with the expected nature of the reproductive barrier between diploids and tetraploids. As in the microsatellite study, introgression into B. pubescens showed clear clines with increasing introgression from B. nana in the north and from B. pendula in the south. Unlike B. pendula alleles, introgression of B. nana alleles was found far from the current area of sympatry or allopatry between B. nana and B. pubescens. This pattern fits a shifting zone of hybridisation due to Holocene reduction in the range of B. nana, and expansion in the range of B. pubescens.Special Issue on Genomics of Hybridizatio

    Data from: Unidirectional diploid–tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers

    No full text
    Hybridization may lead to introgression of genes among species. Introgression may be bidirectional or unidirectional, depending on factors such as the demography of the hybridizing species, or the nature of reproductive barriers between them. Previous microsatellite studies suggested bidirectional introgression between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) and also between B. pubescens and diploid B. pendula (silver birch) in Britain. Here, we analyse introgression among these species using 51 237 variants in restriction site-associated (RAD) markers in 194 individuals, called with allele dosages in the tetraploids. In contrast to the microsatellite study, we found unidirectional introgression into B. pubescens from both of the diploid species. This pattern fits better with the expected nature of the reproductive barrier between diploids and tetraploids. As in the microsatellite study, introgression into B. pubescens showed clear clines with increasing introgression from B. nana in the north and from B. pendula in the south. Unlike B. pendula alleles, introgression of B. nana alleles was found far from the current area of sympatry or allopatry between B. nana and B. pubescens. This pattern fits a shifting zone of hybridization due to Holocene reduction in the range of B. nana and expansion in the range of B. pubescens

    Data from: Unidirectional diploid–tetraploid introgression among British birch trees with shifting ranges shown by restriction site-associated markers

    No full text
    Hybridization may lead to introgression of genes among species. Introgression may be bidirectional or unidirectional, depending on factors such as the demography of the hybridizing species, or the nature of reproductive barriers between them. Previous microsatellite studies suggested bidirectional introgression between diploid Betula nana (dwarf birch) and tetraploid B. pubescens (downy birch) and also between B. pubescens and diploid B. pendula (silver birch) in Britain. Here, we analyse introgression among these species using 51 237 variants in restriction site-associated (RAD) markers in 194 individuals, called with allele dosages in the tetraploids. In contrast to the microsatellite study, we found unidirectional introgression into B. pubescens from both of the diploid species. This pattern fits better with the expected nature of the reproductive barrier between diploids and tetraploids. As in the microsatellite study, introgression into B. pubescens showed clear clines with increasing introgression from B. nana in the north and from B. pendula in the south. Unlike B. pendula alleles, introgression of B. nana alleles was found far from the current area of sympatry or allopatry between B. nana and B. pubescens. This pattern fits a shifting zone of hybridization due to Holocene reduction in the range of B. nana and expansion in the range of B. pubescens
    corecore