74 research outputs found

    The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP–dependent activation of TGF-β1

    Get PDF
    Întegrins, matrix metalloproteases (MMPs), and the cytokine TGF-β have each been implicated in homeostatic cell behaviors such as cell growth and matrix remodeling. TGF-β exists mainly in a latent state, and a major point of homeostatic control is the activation of TGF-β. Because the latent domain of TGF-β1 possesses an integrin binding motif (RGD), integrins have the potential to sequester latent TGF-β (SLC) to the cell surface where TGF-β activation could be locally controlled. Here, we show that SLC binds to αvβ8, an integrin expressed by normal epithelial and neuronal cells in vivo. This binding results in the membrane type 1 (MT1)-MMP–dependent release of active TGF-β, which leads to autocrine and paracrine effects on cell growth and matrix production. These data elucidate a novel mechanism of cellular homeostasis achieved through the coordination of the activities of members of three major gene families involved in cell–matrix interactions

    Constitutive Cytokine mRNAs Mark Natural Killer (NK) and NK T Cells Poised for Rapid Effector Function

    Get PDF
    Natural killer (NK) and NK T cells are tissue lymphocytes that secrete cytokines rapidly upon stimulation. Here, we show that these cells maintain distinct patterns of constitutive cytokine mRNAs. Unlike conventional T cells, NK T cells activate interleukin (IL)-4 and interferon (IFN)-γ transcription during thymic development and populate the periphery with both cytokine loci previously modified by histone acetylation. Similarly, NK cells transcribe and modify the IFN-γ gene, but not IL-4, during developmental maturation in the bone marrow. Lineage-specific patterns of cytokine transcripts predate infection and suggest evolutionary selection for invariant but distinct types of effector responses among the earliest responding lymphocytes

    A computational analysis of Turkish makam music based on a probabilistic characterization of segmented phrases

    Get PDF
    This study targets automatic analysis of Turkish makam music pieces on the phrase level. While makam is most simply defined as an organization of melodic phrases, there has been very little effort to computationally study melodic structure in makam music pieces. In this work, we propose an automatic analysis algorithm that takes as input symbolic data in the form of machine-readable scores that are segmented into phrases. Using a measure of makam membership for phrases, our method outputs for each phrase the most likely makam the phrase comes from. The proposed makam membership definition is based on Bayesian classification and the algorithm is specifically designed to process the data with overlapping classes. The proposed analysis system is trained and tested on a large data set of phrases obtained by transferring phrase boundaries manually written by experts of makam music on printed scores, to machine-readable data. For the task of classifying all phrases, or only the beginning phrases to come from the main makam of the piece, the corresponding F-measures are.52 and.60 respectively.Scientific and Technological Research Council of Turkey, TUBITAK (112E162

    A critical role for dendritic cells in the evolution of IL-1beta-mediated murine airway disease.

    Full text link
    peer reviewedChronic airway inflammation and fibrosis, known as airway remodeling, are defining features of chronic obstructive pulmonary disease and are refractory to current treatments. How and whether chronic inflammation contributes to airway fibrosis remain controversial. In this study, we use a model of chronic obstructive pulmonary disease airway disease utilizing adenoviral delivery of IL-1beta to determine that adaptive T cell immunity is required for airway remodeling because mice deficient in alpha/beta T cells (tcra(-/-)) are protected. Dendritic cells (DCs) accumulate around chronic obstructive pulmonary disease airways and are critical to prime adaptive immunity, but they have not been shown to directly influence airway remodeling. We show that DC depletion or deficiency in the crucial DC chemokine receptor ccr6 both protect from adenoviral IL-1beta-induced airway adaptive T cell immune responses and fibrosis in mice. These results provide evidence that chronic airway inflammation, mediated by accumulation of alpha/beta T cells and driven by DCs, is critical to airway fibrosis

    Role of IL-17A in murine models of COPD airway disease.

    Full text link
    peer reviewedSmall airway fibrosis is a major pathological feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Chronic inflammatory cells accumulate around small airways in COPD and are thought to play a major role in small airway fibrosis. Mice deficient in alpha/beta T cells have recently been shown to be protected from both experimental airway inflammation and fibrosis. In these models, CD4+Th17 cells and secretion of IL-17A are increased. However, a pathogenic role for IL-17 in specifically mediating fibrosis around airways has not been demonstrated. Here a role for IL-17A in airway fibrosis was demonstrated using mice deficient in the IL-17 receptor A (il17ra) Il17ra-deficient mice were protected from both airway inflammation and fibrosis in two different models of airway fibrosis that employ COPD-relevant stimuli. In these models, CD4+ Th17 are a major source of IL-17A with other expressing cell types including gammadelta T cells, type 3 innate lymphoid cells, polymorphonuclear cells, and CD8+ T cells. Antibody neutralization of IL-17RA or IL-17A confirmed that IL-17A was the relevant pathogenic IL-17 isoform and IL-17RA was the relevant receptor in airway inflammation and fibrosis. These results demonstrate that the IL-17A/IL-17 RA axis is crucial to murine airway fibrosis. These findings suggest that IL-17 might be targeted to prevent the progression of airway fibrosis in COPD

    Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data

    Get PDF
    In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Modelling T-cell immunity against hepatitis C virus with liver organoids in a microfluidic coculture system.

    No full text
    Hepatitis C virus (HCV) remains a global public health challenge with an estimated 71 million people chronically infected, with surges in new cases and no effective vaccine. New methods are needed to study the human immune response to HCV since in vivo animal models are limited and in vitro cancer cell models often show dysregulated immune and proliferative responses. Here, we developed a CD8+ T cell and adult stem cell liver organoid system using a microfluidic chip to coculture 3D human liver organoids embedded in extracellular matrix with HLA-matched primary human T cells in suspension. We then employed automated phase contrast and immunofluorescence imaging to monitor T cell invasion and morphological changes in the liver organoids. This microfluidic coculture system supports targeted killing of liver organoids when pulsed with a peptide specific for HCV non-structural protein 3 (NS3) (KLVALGINAV) in the presence of patient-derived CD8+ T cells specific for KLVALGINAV. This demonstrates the novel potential of the coculture system to molecularly study adaptive immune responses to HCV in an in vitro setting using primary human cells
    corecore