
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Thien-Phong Vu Manh,
INSERM U1104 Centre d’immunologie de
Marseille-Luminy (CIML), France

REVIEWED BY

Cyrille Mionnet,
INSERM U1104 Centre d’immunologie de
Marseille-Luminy (CIML), France
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In the past decade, high-dimensional single-cell technologies have revolutionized

basic and translational immunology research and are now a key element of the

toolbox used by scientists to study the immune system. However, analysis of the

data generated by these approaches often requires clustering algorithms and

dimensionality reduction representation, which are computationally intense and

difficult to evaluate and optimize. Here, we present Cytometry Clustering

Optimization and Evaluation (Cyclone), an analysis pipeline integrating

dimensionality reduction, clustering, evaluation, and optimization of clustering

resolution, and downstream visualization tools facilitating the analysis of a wide

range of cytometry data. We benchmarked and validated Cyclone on mass

cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and

multiplexed immunofluorescence (IF) in a variety of biological contexts,

including infectious diseases and cancer. In each instance, Cyclone not only

recapitulates gold standard immune cell identification but also enables the

unsupervised identification of lymphocytes and mononuclear phagocyte subsets

that are associated with distinct biological features. Altogether, the Cyclone

pipeline is a versatile and accessible pipeline for performing, optimizing, and

evaluating clustering on a variety of cytometry datasets, which will further power

immunology research and provide a scaffold for biological discovery.

KEYWORDS

cyclone, CyTOF, spectral flow cytometry, spatial expression data, multi-parametric
analysis, FlowSOM, clustering optimization
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Introduction

The advent of high-dimensional single-cell technologies has

transformed our ability to study the complex array of cell types,

states, and behaviors comprising the immune system (1, 2). Single-

cell proteomics including mass cytometry (CyTOF) and high-

dimensional flow cytometry enables the detection of up to 50

extra- and intracellular proteins on hundreds of thousands of

cells from a sample (3, 4). These technologies have been applied

to a wide variety of patient cohorts and animal models to gain

insights into immune set points, responses, and pathology including

cancer, infection, hyperinflammatory disorders, and therapeutic

intervention (5–8).

The high dimensionality of these data has necessitated the

development and application of tools that can parse these data in

a semi-automated way. This includes identifying cell populations

via clustering algorithms (9–11), dimensionality reduction

approaches for stratifying samples (12, 13), and visualization

software and statistical packages for downstream analysis (14–16).

Due to the diversity and complexity of the immune system, the use

of clustering algorithms and dimensionality reduction has become

increasingly standard for immune monitoring across tissues and

species. However, to date, a consensus process has not been

established, rendering the comparison of this type of analysis

difficult. While many tools have been both introduced and

evaluated, many researchers such as wet-lab immunologists with

limited computational experience struggle to navigate the vast

landscape of tools for processing and analyzing cytometry

datasets. Challenges in algorithm selection, run accessibility and

scalability, and chaining the tools for each stage of analysis

(preprocessing (17, 18), batch correction, clustering, and

downstream analysis) pose significant barriers in the analysis of

cytometry data. Moreover, many of these clustering algorithms

require selecting a clustering resolution (i.e., selecting the number of

clusters), which is largely arbitrary and may reduce the

unsupervised nature of these methods. Therefore, an integrated

cluster evaluation (19, 20) step is needed to compare different

resolutions, guide clustering optimization, and facilitate a

tool’s usage.

Here, we present the CYtometry CLustering Optimization aNd

Evaluation (Cyclone) (github.com/UCSF-DSCOLAB/cyclone/)

pipeline for the analysis of a wide range of cytometry data,

including but not limited to CyTOF, fluorescence-based

cytometry, and multiplexed immunofluorescence (IF). Cyclone

clusters data using FlowSOM (9)—selected based on scalability

and fidelity to manual gating—and allows users to optimize and

evaluate cluster resolution based on both stability and user

exploration. We present Cyclone’s performance on CyTOF

datasets as well as other single-cell technologies including spectral

flow cytometry and imaging. We designed Cyclone to be

interoperable with outputs of the leading batch correction

algorithms (21, 22) and to feed into accessible downstream

analysis tools (15, 16). We additionally accommodate both large

datasets as well as showcase Cyclone’s performance on

downsampled data, increasing its accessibility to those with either

extensive or limited computational resources. Leveraging Cyclone
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on a seven-color multiplexed immunofluorescence dataset obtained

from human colorectal and kidney tumors, we identified a distinct

tumor-associated classical dendritic cell subset. We share the R-

based pipeline publicly along with extensive documentation for its

use in conjunction with upstream and downstream tools. With this

largely “plug and play” pipeline, we hope to lower the barrier to

entry into high-dimensional cytometry analysis and provide a

consensus tool to the research community.
Results

Building a scalable pipeline for analysis of
high-dimensional cytometry data

To create a functional and accessible workflow for cytometry

datasets, we were interested in building a pipeline optimized to meet

criteria that address challenges in analyses of this nature

(Figure 1A). This included 1) a framework optimized for

interoperability, versatility, and ease of use, 2) designed to receive

standard inputs from pre-processing steps including batch

correction and 3) provide a set of outputs that can easily serve as

inputs to downstream analysis and visualization tools. The pipeline

required both the selection of a scalable and accurate clustering

algorithm robust to downsampling and the ability to tune and

evaluate clustering resolution to best meet the specifics of the

biological system and scientific inquiry. Due to the wealth of

existing single-cell technologies and the need for multiple

measurement types to fully understand complex biological

systems, we were additionally interested in developing a pipeline

that would accommodate a range of single-cell cytometric data

modalities including imaging.

A critical component of the pipeline was to select a clustering

algorithm that could 1) scale to a large number of cells and

parameters while maintaining reasonable runtimes and memory

usage and 2) recapitulate populations identified via expert manual

gating. We therefore evaluated a subset of available clustering

algorithms, focusing on popular algorithms shown to perform

well in the literature (23, 24). These included PhenoGraph (11), a

graph-based community detection algorithm; CLARA (25), an

extension of the partitioning around medoids algorithm;

FlowSOM (9), which uses self-organizing map clustering; and

PARC (10), a recent combinatorial graph-based algorithm

optimized for scalability. We applied these algorithms to a

CyTOF dataset measuring the expression of 42 proteins at the

single-cell level on peripheral blood mononuclear cells (PBMCs)

from 17 individuals (Methods, Supplemental Table 1). We also

subset the dataset to various sizes ranging from 1,000 to 10,000 to

50,000 cells per individual to evaluate both speed and memory

usage on a range of dataset sizes (Figure 1B). While memory usage

was similar across algorithms (except for PhenoGraph performance

on the full dataset, which did not conclude in a reasonable amount

of time), FlowSOM and CLARA utilized the least runtime across

dataset sizes. We therefore proceeded to evaluate those two

clustering algorithms on the full dataset. Notably, increasing the

requested cluster number identified by the algorithm across the
frontiersin.org
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FIGURE 1

Building a scalable pipeline and optimizing clustering for analysis of high-dimensional cytometry data. (A) Graphical depiction of Cyclone pipeline.
Cyclone can intake multiple types of cytometry data, including Flow, CyTOF, and imaging data, and works for both raw and batch-corrected data.
FlowSOM clustering includes a grid/clustering optimization step, where a set list of grids is calculated. After the user selects a desired resolution,
Cyclone generates useful plots as well as processed data frames that can be easily handed off to other analysis tools and plotting packages, like
dittoSeq or ggplot2. (B) Clustering tool performance on data through the lens of scalability (runtime and memory required) of tested tools. CLARA
and FlowSOM were similar in their time and memory requirements, while PARC and PhenoGraph have less feasible runtime or memory
requirements. (C) Clustering time increases as cluster number (k) increases. FlowSOM still performs better than CLARA when measuring time to
cluster, regardless of cluster number requested. (D) Optimization of clustering via evaluation of the different resolutions, leveraging Davis–Bouldin
index as indicator (subset of full number of grids assessed; full amount of grids evaluated in the supplement). (E) Ground Truth expert “coarse”-level
annotation identifying broad cell types based on manual gating. (F) FlowSOM cluster annotation at “coarse”-level based on CyTOF panel expression.
(G) Heatmap comparing “coarse”-level annotations assignment based on the “ground truth” manual gating (rows) of full dataset vs. FlowSOM
clustering annotated by expert immunologist based on Cyclone cluster heatmap outputs (columns). (H) Comparison metrics based on “coarse”-level
annotations from two expert immunologists. Various performance metrics were used to assess the accuracy of clusters called in the FlowSOM
clustering compared to ground truth.
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variously sized datasets strongly increased runtime for CLARA as

compared to FlowSOM (Figure 1C), which appeared more time

efficient even with larger cluster counts regardless of cell numbers.

This indicated that CLARA takes more time than FlowSOM to

perform a high-resolution clustering to identify cell subsets.

While our final pipeline does focus on R-based implementation

for clustering (FlowSOM and CLARA) and permits maximum

interoperability with other R-based normalization, debarcoding,

and batch correction packages, early investigations explored

annotations from both R and python packages; thus, we

benchmarked FlowSOM and PARC cluster annotations against

manual gating (Supplemental Figure 1) to evaluate their

performance in identifying cell populations. To compare the

accuracy of annotating clusters based on CyTOF panel expression

to gating ground truth, we developed a custom cell barcode scheme

(see Methods—FCS modifications) to identify cells in the FCS and

facilitate comparison of a cell’s ground truth gating-based

assignment versus how the cell was annotated by two expert

immunologists. To select a resolution/grid for annotation and

evaluation, we calculated the Davies–Bouldin index (DBI) (19), a

within-dataset similarity metric used to evaluate cluster resolution,

across a variety of cluster grid sizes (Figure 1D, Supplemental

Figure 2A). Thirty-six clusters (6 × 6 grid, FlowSOM) or 37

clusters (Resolution 1.3, PARC) were selected for independent

annotation by two expert immunologists to compare to “ground

truth”manual gates from a third expert immunologist. Both ground

truth gating and cluster annotations were performed for major

immune cell populations (“coarse-level”, e.g., all CD4+ T-cell

subsets including memory or naïve are annotated as CD4+ T)

(Figures 1E, F) and for more fine-grained sub-populations (“fine-

level”, Supplemental Figures 2B–E); these annotations were then

visualized in UMAP space. Both FlowSOM and PARC coarse

annotations performed well in the recapitulation of manual

ground truth gating as captured by four evaluation metrics,

including accuracy, adjusted Rand index (26), Fowlkes–Mallows

index (27), and mutual information (28) (Figures 1G, H). As

expected, while performance was not as strong on fine

annotations, metrics showed reasonably accurate clustering for

both clustering algorithms (Supplemental Figure 2C). Some

sources of error included the fact that global clustering did not

isolate small subsets including cDC1s or antibody-secreting cells

(ASCs) as their own cluster at the selected resolution due to its low

abundance. In addition, the accuracy of some subsets of CD4+ and

CD8+ T cells varied due to their definition based on markers that

have a continuum of expression rather than clear positive and

negative expression (e.g., CD45RA). However, the unsupervised

nature of the clustering facilitated the identification of cell subsets

not included in our manual gating, such as CD4−CD8− T cells and

intermediate monocytes (Figure 1G), and B-cell subsets based on

the expression of CXCR5 expression or CD38 (Supplemental 2B).

Notably, while the majority of clusters were easily recognizable and

annotated, a small number of clusters were observed to be dispersed

across the UMAP visualization (Supplemental Figure 2F), rather

than having a more homogenous phenotype (Supplemental
Frontiers in Immunology 04
Figure 2G), which illuminated the utility of visualizing each

cluster’s dispersion as an output for a developed pipeline. Taken

together, these data demonstrate that while PARC and FlowSOM

perform similarly compared to expert gating and have similar

performance on low numbers of cells, FlowSOM outperforms

when considering scalability to higher numbers of cells.
The Cyclone pipeline is a method for data
clustering and evaluation across
resolutions for use in the analysis of
cytometry data

Based on our observations regarding runtime, memory usage,

cluster evaluation methods, and performance on manual gating

recapitulation, we developed the Cyclone pipeline in R (Figure 2).

We designed Cyclone to produce a series of outputs that users can

access to select cluster resolution, evaluate cluster quality, annotate

clusters, and utilize resulting cluster statistics (phenotypes and

abundance) for downstream analyses. To start Cyclone, the user

provides FCS or matrix data files as well as files to specify markers

and file metadata. Cyclone expects any normalization and batch

correction steps to be performed prior to the use of the pipeline. For

CyTOF data, this can be performed by established R packages,

including premessa (github.com/ParkerICI/premessa) for bead-

based normalization and CytoNorm (21) or cyCombine (22) for

batch correction. After reading in and arcsinh transforming the

data, Cyclone calculates UMAP dimensionality reduction. Cyclone

works with either FlowSOM or CLARA for clustering; selecting

FlowSOM enables DBI-based cluster resolution optimization prior

to user grid selection, while with CLARA, the user selects a single

resolution for clustering. If FlowSOM is selected, Cyclone then

performs iterative optimization of clustering across a variety of

cluster grid sizes, which can then be compared using DBI. After the

user selection of desired grid, Cyclone performs clustering,

generates summary matrices, proceeds through an optional

SCAFFoLD step, and then generates output fi les and

visualizations. While not providing batch correction, Cyclone

does provide a means for assessing batch or any other input file

metadata via UMAP (split by batch) visualization (Figure 3A) as

well as clustered heatmaps of cluster frequency with batch or other

metadata information overlaid as rugs (Figure 3B). In addition to a

DBI plot for cluster resolution selection, Cyclone outputs UMAPs

colored by cluster (Figure 3C) as well as heatmaps of marker

expression per cluster for ease of cluster annotation (Figure 3D).

Additional UMAPs and histogram plots are provided per cluster,

showing the cluster’s distribution across the UMAP for an

evaluation of cluster dispersion as an indication of cluster quality

(Figure 3E). Feature UMAP plots of marker expression in all cells

are also exported by default (Figure 3F). Taken together, the

Cyclone pipeline provides a means of clustering, as well as

evaluating and annotating these clusters, to then be readily used

in downstream analyses.
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Cyclone provides accessibility and
interoperability with upstream processing
and downstream analyses

We developed Cyclone to be easily leveraged by researchers

with various backgrounds, especially those with limited coding

knowledge and minimal computational resources. We also
Frontiers in Immunology 05
prioritized interoperability with both upstream and downstream

tools for cytometry data processing and analysis (Figure 4A). In

addition to significant documentation (including vignettes to get

users started with the pipeline), we evaluated Cyclone on

downsampled datasets to determine whether downsampling to

fewer cells could provide an alternative for users to run Cyclone

locally rather than needing additional compute resources for
FIGURE 2

Integration of different pipeline pieces and packages into a single method: “Cyclone”. Using information from initial metadata files (see Supplemental
Tables), FCS files are read into the pipeline. After arcsinh transformation, UMAP is calculated and clustering is performed on a default range of grid
sizes, resulting in a cluster VS DBI plot for clustering grid selection. After user input to select a specific grid, Cyclone generates feature plots of each
antibody included in the panel, split UMAPs to assess cluster dispersion, various QC heatmaps and UMAPs, and a final UMAP annotated by cluster
number. Additionally, expression matrices and cell metadata matrices are saved.
frontiersin.org
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analyses. Thus, we downsampled our evaluation dataset to 50,000

cells per sample and coarsely annotated the resulting optimized

clusters (Figure 4B, Supplemental Figures 3A, B). We then

compared the accuracy of these coarse downsampled annotations

to the coarse annotations on the full dataset and encouragingly

found strong concordance between the full and downsampled

datasets (Figure 4C). When doing fine annotations (Supplemental

Figure 3C), metrics again showed reasonably accurate annotations
Frontiers in Immunology 06
when compared to the full dataset fine annotations (Supplemental

Figure 3D). Thus, data downsampling presents a practical option

for dataset clustering with Cyclone should computing resources be a

challenge for some users.

To optimize Cyclone interoperability with upstream and

downstream processing, we considered batch correction as a

primary upstream target and SCAFFoLD map analysis and

accessible visualization as primary downstream targets. For batch
A B

D

E F

C

FIGURE 3

Evaluation and interpretation of default pipeline outputs and results. (A) UMAPs of batch information. If batches were a part of the CyTOF run,
Cyclone exports UMAP plots split by batch information to assess batch correction or batch effect. (B) Heatmaps of file × cluster and batch × cluster
depicting cell frequency per cluster, and file × feature depicting arcsign transformed data. (C) UMAP annotated by cluster number based on user-
selected grid. (D) Heatmap of median archsinh-transformed expression (unscaled) per cluster used to annotate clusters. (E) Example plots of UMAP
+ histogram showcasing cluster density/dispersion. (F) Example plots of protein feature expression.
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correction, we ensured a pathway exists to enter the Cyclone

workflow with cytometry data in either a matrix format [as

output by cyCombine (22)] or adjusted-FCS files [as output by

CytoNorm (21)] to accommodate interoperability with outputs

from both commonly used batch correction methods.

CytoNorm’s adjusted-FCS files can enter into the pipeline as

normal, but Cyclone’s prepare_checkpoint1() provides an entry

point for cyCombine’s matrix format. The function takes the same

primary inputs as a run without a batch correction step, except for

accepting a matrix (with cells in rows and markers in columns)

instead of the FCS directory. The function then performs all the

same optional steps (arcsinh transformation, control sample
Frontiers in Immunology 07
r emo v a l , a n d s u b s amp l i n g ) b e f o r e o u t p u t t i n g a

Checkpoint1.Rdata file. Afterward, users can run Cyclone as

normal to continue from the second step of UMAP calculation.

To aid in cluster annotation, SCAFFoLD connects clusters to

unique landmark populations based on the cosine similarity in the

feature expression space (15). For powering SCAFFoLD map

downstream analysis, we added an optional step directly into the

Cyclone pipeline; if landmark population FCS files are provided, an

output *.scaffold file can be used to generate a SCAFFoLD map (15)

via the “scaffold::scaffold.run()” command (Figure 4D). For

powering accessible visualization and other downstream follow-

ups, we ensured that the colors of Cyclone plot outputs use color
A

B

D E F

C

FIGURE 4

Accessibility of Cyclone—downsampling and interoperability with upstream and downstream processing. The dataset was downsampled to 50k cells
per sample and then run through Cyclone. Clusters’ cell-type identities were inferred by experts using Cyclone plot outputs. Then, Cyclone outputs
from the full dataset were imported into R and read into a SingleCellExperiment object (29) so that further visualization and analysis could be carried
out with dittoSeq. (A) Overview of interoperability challenges and our solutions. (B) UMAP from 50k downsample run, colored by coarse annotations
of one expert annotator. (C) Comparison of per-cell annotations between the 50k downsample versus the full dataset. (D) Example SCAFFoLD map
export depicting the assignment of each cluster (blue) to a landmark population (red). The circle size corresponds to the number of cells in the
cluster. (E) Box plot showing per-sample cluster frequencies grouped by sex of the patients for coarse-level cell types created with dittoSeq’s
dittoFreqPlot function. (F) Stacked bar plot showing the percent of cells in each cluster by sex of the patients created with dittoSeq’s dittoBarPlot
function.
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blindness-accessible color palettes and that data outputs can be used

with dittoSeq–a color blindness-friendly visualization tool (16).

Although dittoSeq was designed for single-cell RNAseq data, it

proves generalizable to other data modalities including high-

dimensional cytometry. To directly power dittoSeq integration

and downstream statistical analyses, we provide an additional

vignette showing how to 1) transform Cyclone data objects into a

SingleCellExperiment [(29), Chapter four] object compatible with

dittoSeq, 2) generate useful visualizations, 3) add cell-type

annotations for each cluster as well as further annotations such as

spatial information in the case of imaging data, and 4) run statistics

on differences in cluster or cell-type frequencies between samples.

Shown as examples are boxplots of how cluster frequencies compare

between male and female subjects (Figure 4E) and the percent

composition of each cluster in terms of subject sex (Figure 4F); these

functions make probing metadata categories of interest easy to code

and assist in producing publication-ready visualization. These

accessible (in both the color palate and easily leveraged graphing

functions) visualizations are readily created with dittoSeq from

Cyclone outputs.
The Cyclone pipeline generalizes to flow
cytometry datasets

While optimization and development of Cyclone were initially

for CyTOF datasets, we realized the need for such analysis

techniques on a broader set of similar data modalities, including

other cytometry platforms such as spectral flow cytometry. To

evaluate Cyclone’s utility for this analysis, we applied the Cyclone

pipeline to a spectral flow cytometry dataset of mouse liver samples

from a transgenic mouse model for hepatitis B virus (HBV)

response (30). Liver leukocytes collected from eight mice on day

8, the peak of the immune response in this model, were analyzed

using a myeloid-focused spectral flow cytometry panel

(Supplemental Table 2). In a repeat experiment, day 8 liver

leukocytes from nine mice were analyzed using a lymphoid-

focused panel (Supplemental Table 3). The Cyclone pipeline

could be used as built, but we used config files to specify the co-

factor for the arcsinh transformation to a value more typical of flow

cytometry datasets (see Spectral flow data generation and analysis—

Cyclone analysis in Methods). For both experiments, CD45+ live

cells were provided to the Cyclone pipeline. After selecting the local

minimum DBI, we identified and annotated 21 clusters in the T Cell

panel (Figure 5A) and 17 clusters from the Myeloid panel

(Figure 5B). Both panels were able to distinguish several T-cell

and NK-cell subsets (Supplemental Figure 4A) as well as liver

resident macrophages (Kupffer cells) and monocyte-derived

macrophages (Supplemental Figure 4B). As was previously

observed for CyTOF data, unsupervised clustering using Cyclone

largely recapitulated the populations identified by manual expert

gating at a coarse-level (Figures 5C, D). Cyclone further enabled the

identification of cell subsets across immune cell lineages

(Figures 5C, D), which could have been missed by manual gating,

such as NK-cell subsets with various expression of KLRG1 or

CD62L (Figure 5A, Supplemental Figure 4A). To evaluate the
Frontiers in Immunology 08
biological information contained within the unsupervised

clustering, we took advantage of the presence of tetramer staining

to identify the properties of the HBV-specific T cells. While the

tetramer staining was not used as a clustering parameter, we found

that the vast majority of CD8+ (Figure 5E) and CD4+ (Figure 5F)

antigen-specific T cells were enriched in one or two effector T-cell

clusters with high expression of activation markers identified by

Cyclone for each T-cell subset (Figure 5G). Taken together, we

observed that Cyclone performed well on spectral flow data and

enabled the unsupervised identification of cell phenotypes that are

associated with distinct biological features.
Cyclone enables unsupervised discovery of
cell-type compartmentalization within the
tumor microenvironment

Understanding how the phenotype of individual cells relates to

the function of multicellular compartments within tissues requires

the ability to identify cellular phenotypes with multiple proteins

while simultaneously quantifying the spatial distribution and

interactions of these cells across large regions of tissue. Along

with its applications demonstrated already, Cyclone provides a

unique opportunity to analyze the spatial distribution of

individual cell phenotypes as well as cellular neighborhoods in an

unsupervised manner. To that end, we tested how the Cyclone

pipeline compared to a prototypical imaging data analysis pipeline

containing image visualization. First, we created a 7-plex

immunofluorescent staining panel to be used on a colorectal

tumor tissue (CRC1) consisting of a tumor marker (EPCAM), T-

cell markers (CD3, CD4, and CD8), and myeloid markers (CD163,

HLA-DR, and XCR1) (Figure 6A). Next, we utilized DeepCell (31)

segmentation software to demarcate individual cells by inputting

nuclei (DAPI+) and membrane markers (CD3+, CD4+, CD8+, and

CD163+) and labeled each cell-type annotation based on rational

gating parameters (e.g., CD4+ T cell = CD3+CD4+CD8−XCR1−)

(Supplemental Figure 5A, table). We found that determining the

manual thresholding on certain markers such as CD163+ expression

was not visually clear in designating a suitable cutoff as compared to

CD3+ expression and that this could ultimately lead to variability in

the frequency of cell types annotated (Supplemental Figure 5A,

histogram plots). For example, the threshold cutoff at 11 observed

CD163+ expression on low-background, segmented cells, while

the threshold cutoff at 13 missed CD163+ cells. Thus, we opted

for a middle ground by choosing threshold 12 for the downstream

comparison with our Cyclone pipeline. To run the Cyclone pipeline

on this multiplexed immunofluorescence data, we followed the

following procedure. Once raw expression values of each marker

for every cell were curated and assigned to each cell identified by

DeepCell, we obtained a cell per protein expression matrix used to

run the Cyclone pipeline (see Methods). After DBI evaluation, we

chose a grid size of 2 × 4, which had the lowest DBI value

(Figure 6B). This resolution generated eight unique clusters

spanning immune and non-immune cells (Figure 6C). These

clusters comprised tumor cells expressing different levels of HLA-

DR (Clusters 2 and 4), CD4+ and CD8+ T cells (Clusters 3 and 8),
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mononuclear phagocytes (MNPs) (Clusters 5, 6, and 7), and one

cluster with low expression for all markers (Cluster 1) (Figure 6D).

Interestingly, among the different MNPs, Cluster 7 is characterized

by the high expression of XCR1+ and CD163+ and low HLA-DR

expression. Since the combination of the Cyclone and DeepCell
Frontiers in Immunology 09
segmentation outputs provides cluster identities (Cyclone) and x,y

coordinates (DeepCell) for each cell within the same data frame, we

leveraged this to evaluate where these XCR1+CD163+ cells were

located within the tissue. When overlaying Cluster 7 onto the image

of CRC1, cells depicted as Cluster 7 (green arrows), we were able to
A B

D
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C

FIGURE 5

Utilization of Cyclone pipeline for spectral flow cytometry data. Liver leukocytes from HBVEnvRag−/− mice were harvested 8 days after adoptive transfer
with wild-type splenocytes for spectral flow cytometry analysis. Cyclone pipeline was run on this spectral flow cytometry data. (A) “Fine”-level annotated
UMAP of 22-color T cell-focused spectral flow cytometry panel (Supplemental Table 3) run on nine mouse samples. (B) “Fine”-level annotated UMAP of
25-color myeloid-focused spectral flow cytometry panel (Supplemental Table 2) run on eight mouse samples. Three unidentifiable “junk” clusters were
removed from this UMAP. (C) Heatmap of “coarse”-level cell-type annotations comparing expert manual gating identities (rows) to Cyclone cluster
annotations (columns) in (A) (T cell-focused panel). (D) Heatmap of “coarse”-level cell-type annotations comparing expert manual gating identities (rows)
to Cyclone cluster annotations (columns) in panel (B) (Myeloid-focused panel). (E) Magnified section of panel (A) showing density plot of HBV-specific
MHC class I tetramer+ CD8+ T cells. (F) Magnified section of panel (A) showing expression of HBV-specific MHC class II tetramer+ on CD4+ T cells.
(G) Frequencies of “fine”-level cluster annotations among Tetramer+ CD8+ or CD4+ T cells. Tetramer+ cells were defined as events with fluorescence
intensities 3 or more standard deviations above mean fluorescence in their respective channels.
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confirm that they had both XCR1+ and CD163+ expression

(Figure 6E). Additionally, these cells had an enriched spatial

distribution within the stromal compartment as opposed to

cDC1s and other clusters enriched in the tumor compartment
Frontiers in Immunology 10
(Figures 6F, G, Supplemental Figure 5B). We next validated that

XCR1+CD163+ cell types could be found in other colorectal (CRC2)

and kidney (KID1) tumor samples subjected to Cyclone

(Supplemental Figure 5C). However, these samples observed
A
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FIGURE 6

Utilization of Cyclone pipeline for imaging data. (A) Representative immunofluorescence imaging of colorectal tumor biopsy using tumor marker
[EPCAM (blue)], T cell markers [CD3 (red), CD4 (green), and CD8 (white)], and myeloid markers [CD163 (purple), HLA-DR (cyan), and XCR1 (yellow)
staining]. Scale bar denotes 500 mm. (B) Scatterplot of the Davies–Bouldin index and cluster size over multiple iterations of Louvain clustering and
varying parameters using seven markers used in immunofluorescence as in panel (A) Grid size 2 × 4 was chosen for downstream analysis (green dot,
yellow circle). (C) UMAP visualization of 45,177 cells from the colorectal tumor biopsy with specific populations annotated based on (D) an arcsinh-
transformed expression heatmap of all markers row-scaled. (E) Representative immunofluorescence imaging of tumor biopsy (merge; left) with inset
(middle) of XCR1+ (yellow) and CD163+ (blue) staining. Cluster 7 from Cyclone pipeline was overlaid and annotated (green arrows) representing
XCR1+CD163+ cells. Scale bar denotes 20 mm. (F) Full image representation (left) of stromal (pink) and tumor (blue) regions in tumor tissue biopsy
(top left) with cDC1+ cell Cluster 6 (top right), XCR1+CD163+ cell Cluster 7 (bottom left), and CD4+ T cell Cluster 8 (bottom right) overlays (black
dots). (G) Log2 fold change bar plot on stromal/tumor ratio of each cluster annotation in CRC1 tumor sample.
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different stromal and tumor enrichments for CD4+ T cells, cDC1s,

and XCR1+CD163+ cells compared to CRC1.

Notably, while conventional manual gating for XCR1+CD163+

cells is possible, the thresholding strategy of comparing

independent markers with strict cutoffs likely misses out on what

Cyclone identifies when leveraging the entire set of markers to

identify cell types (Supplemental Figure 5D). Taken together, we

highlight the successful application of the Cyclone pipeline on

multiplexed imaging data in tumor tissue to discriminate two

different XCR1+ subsets and their spatial features within the

tumor microenvironment.
Discussion

In this work, we present the Cyclone pipeline—a versatile and

accessible pipeline for performing, optimizing, and evaluating

clustering on cytometry datasets. The pipeline takes in single-cell

measurements, performs high-dimensional clustering, allows the

user to select a clustering resolution with guided metrics, and

provides outputs for facile cluster annotation and downstream

analysis. We confirmed the fidelity of FlowSOM clustering to

expert manual gating, as well as its performance on high-

dimensional datasets; to date, we have successfully applied the

Cyclone pipeline with FlowSOM clustering to a 42-parameter

CyTOF dataset of 50 million cells. We have released the pipeline

code and documentation with the aim of making it accessible to the

greater community, where it has already begun to be applied.

The selection of FlowSOM was based on identifying a clustering

algorithm 1) that provided accurate identification of cell populations

in clustering as compared to manual gating and 2) that was

reasonably scalable to large datasets. In our evaluation, we found

that FlowSOM could handle datasets of up to 50 million cells, while

also identifying both our coarse and fine manually gated cell

populations at a high level of accuracy (Figure 1). Our assessment

agrees with the benchmarking literature that also found FlowSOM to

capture both abundant and rare cell populations with reasonable

runtime (23). Central to this work was to build a tool that would be

available to and easy to use by the research community, including

wet-lab scientists, such that researchers are better empowered to

engage with their cytometry datasets. In our collaborative research

model, we brought together the computational rigor from data

scientists with the perspectives, challenges, and biological intuition

of wet-lab biologists for the design and development of the Cyclone

pipeline. This included the consideration of high-performance

computational resource access, which is not always available or

accessible to wet-lab scientists. We therefore validated Cyclone’s

performance on downsampled data to offer an option for running

the pipeline locally on a personal laptop. This also included

addressing the challenges of varied inputs (i.e., starting with varied

file formats, either FCS files or a more general matrix format), as well

as a computational hand-off to downstream analysis tools, either of

which could erect a barrier to researchers less proficient with coding.

While commercially available tools offer clustering pipelines such as

OMIQ, CellEngine, and Cytobank, it was important to us to offer a

freely available pipeline that can be flexible to the computational
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resources available to the researcher as well as accommodate a large

number of cells. In addition, we pair this clustering with the ability to

evaluate clustering resolutions and perform dimensionality reduction

to better enable downstream analysis.

Cyclone is readily generalized to a variety of cytometry datasets

beyond CyTOF data, demonstrating its versatility as a pipeline for

high-dimensional datasets that can be extensible and adaptable as

technologies continue to evolve. We demonstrate the application of

Cyclone to spectral flow cytometry data, in this case in the setting of

a mouse model of viral infection, as well as immunofluorescence

imaging data of the tumor microenvironment. Excitingly, Cyclone

has been further applied to a CO-Detection by indEXing (CODEX)

(32, 33) dataset as well as a series of other CyTOF datasets (32) and

spectral flow datasets (data not shown), further confirming

its versatility.

These additional applications of Cyclone not only validated that

the pipeline was functional in these settings but also demonstrated

its strengths in identifying elements of the biological systems that

may be overlooked with manual gating. Clustering of the tumor

microenvironment imaging data revealed a CD163+XCR1+ cell

subset that was enriched in the stroma region. It is now well

accepted that XCR1 expression defines the classical dendritic cells

of type 1 (cDC1) across a wide range of organisms (34). It is

therefore tempting to suggest that these cells may represent a

population of CD163+ DC1, which has been previously described

in human breast and lung cancer patients (35). However, in this

previous study, these CD163+ DCs were defined as a discrete subset

of DCs distinct from both cDC1s and cDC2s and had the ability to

efficiently trigger CD103 expression in CD8+ T cells in vitro, but the

expression of XCR1 was not measured. The origin of these

XCR1+CD163+ cells remains unclear, and more work is

warranted. Nevertheless, we anticipate that the flexibility and

operability of the Cyclone pipeline will help address this question

as well as aid in the investigation of these cells’ spatial relationship

within the tumor microenvironment and better define their

potential role in the tumor immune response. In the spectral flow

dataset, HBV-tetramer staining could be integrated with the

clustering of T-cell subsets to better phenotype these antigen-

specific cells. We found that the majority of tetramer+ CD4+ or

CD8+ T cells clustered together in their respective compartments,

indicating a shared phenotype. Unsurprisingly for this day 8

timepoint in the immune response, MHC Class I Tetramer+

CD8+ T cells and MHC Class II Tetramer+ CD4+ T cells fell

primarily into clusters identified as effector T cells with high

expression of markers of activation, including CD44 and PD-1,

and markers of high proliferative capacity, including Ly108 and

TCF-1. Notably, those two markers have been previously identified

in antigen-specific CD8+ T cells during Lymphocytic

choriomeningitis virus (LCMV) chronic infection and cancer and

have been associated with a cycling T-cell stage, which precedes

exhaustion program upon chronic stimulation (36).

This work has several limitations, which can be explored or

developed in future work. The set of clustering algorithms we

compared for selection was restricted to four popular algorithms

that are prevalent in cytometry analysis and have been elsewhere

benchmarked (24), rather than us doing a more exhaustive search de
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novo. In addition, though we selected FlowSOM as our default and

fully optimized algorithm, CLARA and FlowSOM performed

similarly in our comparisons; while the user has the option to

select CLARA clustering, the DBI optimization only works with

FlowSOM in our implementation. We additionally noted in our

evaluation of the clustering that the selected resolutions sometimes

failed to capture low-abundance populations as their clusters, such as

cDC1s, eosinophils, or ASCs. This is unsurprising and a common

challenge in global clustering approaches, which can be remedied

either by 1) “over-clustering” the data (i.e., selecting a higher

resolution such that you may better capture lower abundance

populations but larger populations are further partitioned and need

to be subsequently merged back together into a single population) or

2) “subclustering” the data (e.g., taking only the myeloid subsets and

clustering them with relevant markers such that only those cells and

markers are partitioning the space). We also noted decreased

accuracy clusters defined by markers with a continuum of

expression such as CD45RA (e.g., naïve v. memory T cells);

however, because the placement of this manual gate on a

continuum is somewhat arbitrary, modest discrepancy between the

manually defined abundance and cluster abundance seems of low

importance as long as each is applied consistently across samples of

interest. In addition, while we found these algorithms to be robust to

downsampling, we have found that FlowSOM and CLARA could not

accommodate a larger CyTOF data set of ~90 million cells, regardless

of resource dedication. Further optimization of those algorithms is

needed to be able to accommodate increasingly large cytometry

datasets. Finally, while we have invested in interoperability and

extensive documentation and vignettes for ease of use, Cyclone

could be even more accessible to a non-coding user base with the

development of a graphical user interface (GUI) such as an R-shiny

application (https://shiny.rstudio.com) or as a workflow in web-based

tools such as the University of California San Francisco (UCSF) Data

Library (https://datalibrary.ucsf.edu/), the Chan Zuckerberg

Initiative’s CELLxGENE (https://github.com/chanzuckerberg/

cellxgene), or CellEngine (https://github.com/primitybio/cellengine-

python-toolkit), which could be the subject of future efforts. In sum,

Cyclone takes the next step forward in the optimization and

democratization of cytometry-based analysis tools to further power

biological discovery.
Methods

Mass cytometry data generation
and preprocessing

Sample collection
Blood samples from patients were obtained under institutional

review board (IRB) #11-07994 protocol approved by the UCSF IRB,

and #2012.059-2 (SCoo) protocol approved by Sutter Health IRB

the IRB of record for the study. Written informed consent was

obtained from all patients. De-identified healthy donor sample was

obtained from Vitalant Research Institute (San Francisco, CA,

USA). Blood was collected into sterile EDTA vacutainer tubes
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(VWR International, Road Radnor, PA, USA) and processed

within 24 hours of collection.

Sample preparation
PBMCs were isolated using Ficoll-Paque Plus (GE Healthcare,

Chicago, IL, USA) density gradient centrifugation; after isolation,

cells were aliquoted in 0.5 × 107 cells per vial in cell freezing media

(10% dimethyl sulfoxide (DMSO) in fetal bovine serum (FBS))

and cryopreserved.

CyTOF panel and staining
Mass cytometry was performed as described (37) with

modifications. Briefly, primary conjugates of mass cytometry

antibodies were prepared using the MaxPAR antibody

conjugation kit (Fluidigm, South San Francisco, CA, USA)

according to the manufacturer’s recommended protocol.

Following labeling, antibodies were diluted in Candor PBS

Antibody Stabilization solution (Candor Bioscience GmbH,

Wangen, Germany) supplemented with 0.02% NaN3 to between

0.1 mg/mL and 0.3 mg/mL, and stored long-term at 4°C. Each

antibody clone was titrated to optimal staining concentrations using

unstimulated or anti-CD3/CD28 stimulated PBMC samples. All

mass cytometry antibodies and concentrations used for analysis can

be found in Supplemental Table 1. Mass cytometry experiments

were performed over the course of nine separate experiments. Each

PBMC sample was thawed at 37°C and washed in pre-warmed

RPMI-1640 media (Sigma-Aldrich Life Sciences, Burlington, MA,

USA) supplemented with 10% FBS (Gibco, Thermo Fisher

Scientific, Waltham, MA, USA) in the presence of 250U Pierce

Universal Nuclease for Cell Lysis (Thermo Fisher Scientific,

Rockford, IL, USA); cells were counted using the Beckman

Vi-Cell XR Cell Counter. Only samples with viability >75% were

used (85% viability on average); 2.5 × 106 cells/sample were stained

for 1 min with 25 mM of cisplatin (Sigma-Aldrich) in phosphate-

buffered saline (PBS) plus EDTA, before undergoing quenching 1:1

with PBS/EDTA/bovine serum albumin (BSA) to determine

viability. Staining was performed on a shaker (90 rpm). For

staining, cells were first resuspended in cell staining media (CSM)

(Fluidigm, South San Francisco, CA, USA) with 5 mL of Human

TruStain FcX™ block (BioLegend, San Diego, CA, USA) for 5 min

at room temperature to block Fc receptors, followed by staining

with CXCR5 antibody in CSM (3 mg/mL) for 30 min at 4°C. Cells

were washed, fixed with Fix I Buffer from The Cell-ID™ 20-Plex Pd

Barcoding Kit following the manufacturer’s instructions (Fluidigm,

South San Francisco, CA, USA), and barcoded by mass-tag labeling

with distinct combinations of stable Pd isotopes diluted in Maxpar

Barcode Perm Buffer (Fluidigm, South San Francisco, CA, USA) as

described previously (5). Twenty barcoded samples were pooled

into a single fluorescence-activated cell sorting (FACS) tube (BD

Biosciences, San Jose, CA, USA) and stained with a cocktail

containing surface marker antibodies (Supplemental Table 1) in a

final volume of 1,000 mL of CSM for 30 min at room temperature.

Samples drawn at different timepoints per patient were barcoded

together. Cells were then permeabilized with perm wash buffer

(eBioscience, Thermo Fisher Scientific) fol lowing the
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manufacturer’s instructions and then incubated with a cocktail

containing intracellular marker (Supplemental Table 1) antibodies

diluted in perm wash buffer (eBioscience, Thermo Fisher Scientific)

for 1 hour at 4°C. Cells were finally stained with 191/193Ir DNA

intercalator (Fluidigm, South San Francisco, CA, USA) diluted in

PBS with 1.6% paraformaldehyde (PFA) (Electron Microscopy

Sciences, Hatfield, PA, USA) 24 hours prior to data acquisition.

Data acquisition
For acquisition, cells were washed and resuspended at 1×106/mL

in deionized water + 10%EQ four-element calibration beads

(Fluidigm) and run on a Fluidigm CyTOF2 Helios mass Cytometer

within 1 week of staining.
Data preprocessing (premessa ->
bead normalization)

After data collection, we used the premessa pipeline (https://

github.com/ParkerICI/premessa) to normalize data and

deconvolute individual samples. From the individual sample files,

normalization beads were excluded based on Ce140 and Eu153

signals. Single-cell events were identified based on Ir191 DNA

signal measured against event length, and CD45− Pt195+ dead

cells were excluded (Supplemental Figure 1). Potential batch

effects were minimized by including a control sample from the

same individual in each experimental run.
FCS modifications (addition of unique cell
IDs for tracking)

The FCS files do not contain cell identifiers. To accurately

compare cell identity from either the manually gated annotations or

the FlowSOM or PARC clusters annotated by two immunology

experts, we added unique identifiers to all CD45+ live gated cells

across all FCS files and used these files for all downstream analyses.

We created the unique identifiers by combining the sample

identifier and the index of the single cells in each FCS file to

generate unique identifiers, such as “<sample_id>_<cell_id>“. In

this way, each cell gained a unique barcode id used for future

comparative analyses.
Batch correction
The samples were processed across nine batches. While the

bead normalization of CyTOF data controls for the batch effects

introduced due to instrument change, it does not address all factors

affecting batch-to-batch variations (38). To evaluate the batch

effects, we first clustered the single cells using CLARA (25) and

compared the batch compositions across clusters. We observed

uneven distribution of batches across clusters (data not shown). To

account for this residual batch-to-batch variation, we corrected the

signal for batches using CytoNorm (21). We used the control

samples (the same sample that was replicated across batches) to

train the model and adjusted the batch effects in non-control

samples using nCells = 4k, nClus = 10, and the grid size of 5 × 5
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(xdim = 5; ydim = 5). We determined that CytoNorm adjustment

removed the majority of batch effects from the data (Figure 3A).

Manual gating
The main mass cytometry gating scheme can be found in

Supplemental Figure 1 and shows the exclusion of beads, debris,

dead cells, CD45− cells. Following this removal, we show the main

gating strategy for identifying major immune cell populations from

the mass cytometry dataset.

Generation of subsets
Different numbers of cells were selected from batch-

corrected FCS files to produce specific subsets of the data: 1k

subset = 1,000 cells per FCS file, 10k subset = 10,000 cells per FCS

file, 50k subset = 50,000 cells per FCS file, and full subset = all cells

from FCS files.
Evaluation of runtime and memory usage
for different clustering tools

To scope clustering algorithms for our pipeline, we tested four

Python- or R-based widely used clustering tools for cytometry data:

CLARA, FlowSOM, PhenoGraph, and PARC. CyTOF analysis

allows users to capture hundreds of thousands of cells, and

clustering such large datasets requires runtime- and memory-

efficient tools that do not compromise clustering performance.

One aim of our work was to design a scalable pipeline for large

datasets (containing many samples, each with hundreds of

thousands of cells). Therefore, we decided to compare the

runtime and memory usage of the selected clustering tools.

Different parameters affect the runtime and memory usage in

different tools. We observed the parameters affecting the number

of clusters were the ones that controlled algorithm runtime. To

perform a fair comparison between the tools, we identified these

parameters affecting cluster counts and used values that produced a

similar number of clusters across all four tools. We used k = 24 in

CLARA, xdim = 6 and ydim = 6 in FlowSOM, k = 25 in

PhenoGraph, and resolution = 1.3 in PARC. These parameters

resulted in 30–37 clusters called by each tool. We measured the time

for clustering and the memory usage on CentOS nodes of a high-

performance computer cluster.
Pipeline

Inputs
In order to begin a Cyclone run, metadata files “file_metadata.csv”,

“marker_metadata.csv”, and “config.yml” must be generated. These

files are unique to your dataset, but Cyclone requires certain metadata

to locate the FCS files and associate metadata with them. In the

file metadata csv, column “file_name” records the name of each FCS

file, “donor_id” denotes sample origin, “pool_id” denotes
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batch identification (if any), and “control_sample” is a Boolean

indicating whether the sample is a control or not. The file metadata

csv is created via any scripting language based on the FCS files

present. To create the “marker_metadata.csv”, we provide “cyclone/

make_marker_metadata_csv.R”, which will read in an FCS file,

and create a file with the following columns: channel_name,

marker_name, used_for_UMAP, used_for_clustering, and

used_for_scaffold. It may be advantageous to use a marker for

clustering, but not use that marker for UMAP calculation. Thus, the

Boolean values for each marker in the “used_for_*” columns provided

granular controls for using markers for UMAP, clustering, and

SCAFFoLD analysis. The final file “config.yml” controls how

Cyclone will be run. In brief, it contains the absolute path of FCS

files and save location for pipeline outputs, location of metadata files,

and parameters associated with data processing (arcsinh_cofactor,

default 5), UMAP (n_neighbors, default 15; min_dist, default 0.1;

spread, default 0.1; learning_rate, default 0.5; “random” to assign initial

embedding positions), and clustering (k, default 3) to tune node

connectivity. Cyclone is able to cluster with both FlowSOM and

CLARA, and the choice is specified in “config.yml”. CLARA editable

parameters are k (default 20), metric (default euclidean), and samples

(default 50). The FlowSOM editable parameters are xdim (default 6)

and ydim (default 6), which define the grid (6 × 6). If meta_clustering

with FlowSOM is TRUE, (default FALSE), the “nClus” of FlowSOM

(i.e. the number of meta-clusters) can be defined using “k” (default 3).

Processing steps
At the start of the Cyclone run, the pipeline references the

metadata.csv files to read in FCS data files and creates a raw

expression matrix. After the arcsinh transformation of count

values, a transformed expression matrix is created using values

specified in config.yml. Cyclone also creates a “cell_metadata”

object, which associates each cell/event with file and marker

metadata. Next, Cyclone uses the uwot package with default

parameters to calculate UMAP on the transformed matrix with

the “used_for_UMAP” column of the markers’ metadata file. Each

cell/event UMAP dimensions are assigned to the cell_metadata

object. Next, clustering is performed using either FlowSOM or

CLARA. In FlowSOM, a default series of grids (cyclone/

grid_sizes.csv) are specified, and different resolutions and

clustering parameters are calculated and evaluated with the DBI.

After cluster optimization, the Cyclone pipeline exits to await user

evaluation of the Cluster VS DBI plot (Figure 1D, Supplemental

Figure 2A). If CLARA is used for clustering, the user must specify

clustering parameters, and no DBI-based optimization is

performed. After specifying a specific grid (FlowSOM) or

specifying “k” in config.yml to calculate clusters (CLARA),

clustering is calculated on the transformed matrix with the

“used_for_clustering” column from the markers’ metadata file.

Cluster assignment is stored in the cell_metadata object.

After clustering, Cyclone calculates cluster frequency matrices

(raw and normalized) and calculates cluster median expression

matrix. If SCAFFoLD analysis is selected, a gated directory of

landmark FCS files is required. For each cluster, Cyclone obtains

the closest landmark population and stores this assignment in
Frontiers in Immunology 14
cluster_metadata. After calculating statistics, SCAFFoLD analysis

is saved in a cluster_metadata object. With analysis completed,

Cyclone outputs several helpful plots.
CyTOF cluster annotation and
benchmarking using manually
gated populations

After clustering the data using FlowSOM or PARC, we

performed manual annotation of the resulting clusters from both

tools based on the median expression of markers. Since each

individual may annotate clusters differently, we attempted to

account for human-to-human variations in the manual annotation

of clusters by having two immunology experts independently

annotate the clusters from FlowSOM and PARC. We established

“coarse” and “fine”-levels of annotations. Coarse annotations describe

cells of different compartment groups (e.g., CD4+ T cells, CD8+ T

cells, and B cells). Fine annotations further parse cell types into

subtypes according to their phenotype (e.g., CD8+ T cells are split

further into naïve, central memory, effector memory, and effector

memory re-expressing CD45RA). We then calculated similarities

between cluster annotations of single cells and the single-cell

annotation based on a third immunology expert gating of the

CyTOF data (ground truth annotation). We performed this

comparison for subsets of data multiple times and calculated

averages. Specifically, we subsampled cluster annotation and

manual gating annotation of randomly selected 10,000 cells,

calculated accuracy, and adjusted the Rand index, Fowlkes–

Mallows index, and mutual information. We repeated this process

10 times with different random seeds and calculated the mean across

the iterations for each similarity metric. We performed this analysis

for FlowSOM (Figure 1H, Supplemental Figure 2C) and PARC

annotations (data not shown) from both immunology experts.
dittoSeq visualizations

Cyclone outputs (checkpoint1.Rdata and checkpoint8.Rdata)

were used to create a SingleCellExperiment object (29) in R

containing the arcsinh transformed expression matrix, UMAP

embeddings, clustering, and cell and sample-level metadata.

dittoSeq (16) functions dittoFreqPlot and dittoBarPlot were then

used to create boxplots of cluster frequencies per sample and

stacked bar plots of batch composition per cluster, respectively.
Spectral flow data generation and analysis

Mice
Wild-type (WT) C57BL/6 mice were purchased from Jackson

Laboratory (Bar Harbor, ME, USA). HBVEnvRag−/− mice were

previously described (30). Briefly, HBVEnvRag−/− mice were

generated using HBVEnv+ mice [lineage 1075D; gift from F.

Chisari, Scripps Research Institute (39)] backcrossed to Rag1−/−
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C57BL/6 mice for 15 generations. HBVEnvRag−/− mice contain the

entire envelope (subtype ayw) proteincoding region under the

constitutive transcriptional control of the mouse albumin

promoter. Young (3 weeks old, before weaning) or adult (8 to 12

weeks old) HBVEnvRag−/− mice were given 108 syngeneic

splenocytes pooled from adult (8 to 12 weeks) WT mice in 0.5

mL of phosphate-buffered saline via tail vein injection. Mice were

maintained at the Laboratory Animal Resource Center (LARC)

facility at UCSF where health was monitored daily by the LARC

staff. Experimental procedures were performed in accordance with

Institutional Animal Care and Use Committee (IACUC)-approved

protocols, and all efforts were made to minimize animal suffering.

Sample preparation
Mice were anesthetized in chambers with 1.5% oxygen and 3%

isoflurane. Samples for the T cell-focused panel were isolated from the

liver after perfusion and digestion. Briefly, mice were perfused via the

inferior vena cava using digestion media [Hanks’ Balanced Salt

Solution (HBSS), crude collagenase (0.2 mg/mL; Crescent Chemical,

Islandia, NY, USA), and DNase I (0.02 mg/mL; Roche Diagnostics,

Basel, Switzerland)]. Livers were forced through a 70mm filter using a

syringe plunger, and debris was removed by centrifugation (30 g for 3

min). Supernatants were collected and centrifuged for 10 min at 650 g.

Cells were isolated from the Percoll interface using a 60%:40% Percoll

gradient. Samples for the myeloid-focused panel were isolated from the

liver after 6 min of perfusion via the inferior vena cava using digestion

media as above. Livers were chopped and further digested with liberase

and DNase I (Roche Diagnostics) [1 Wünsch Units (WU) and 0.8 mg,

respectively, in 10 mL of RPMI-1640 containing 5% FBS] for 30 min at

37°C in a shaking water bath. Livers were forced through a 70mm filter,

and debris was removed by centrifugation (30 g for 3 min).

Supernatants were collected and centrifuged for 10 min at 650 g.

Cells were isolated from the interface of a 60%:40% Percoll gradient.

Staining and acquisition
Cells were prepared as above. Samples stained with the T cell-

focused panel were first stained with custom HBV-specific

tetramers developed by the National Institutes of Health (NIH)

Tetramer Core Facility at Emory University. Cells were stained first

with MHC Class II Tetramer for 1 hour at 37°C protected from

light. Next, these cells were then stained with MHC Class I

Tetramer for 1 hour at 4°C protected from light. For both panels,

cells were then stained with Live/Dead Fixable Blue (Thermo Fisher

Scientific) according to the manufacturer’s instructions. Next,

surface markers on cells were stained according to standard

protocols with anti-mouse antibodies detailed in Supplemental

Table 2 (Myeloid-focused Panel) or Supplemental Table 3 (T cell-

focused Panel). Finally, cells were fixed and permeabilized using

FoxP3/Transcription Factor Staining Buffer Set (Thermo Fisher

Scientific, cat. 00-5523-00) and stained with anti-mouse antibodies

targeting intracellular markers according to standard protocols.
Data acquisition and preprocessing
Single-color reference controls were collected for live unmixing

with calculated autofluorescence immediately before fully stained
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sample acquisition. For sample acquisition, cells were run the same

day as preparation and staining on an Aurora flow cytometer

(Cytek, Fremont, CA, USA) with a 5-laser setup at the UCSF

Flow CoLab. Following sample collection, spectral signatures were

checked to ensure reliable unmixing, and channel spillover was

adjusted in SpectroFlo (Cytek). Prior to Cyclone and manual gating

analyses, FCS files were gated on leukocyte size/granularity, singlets,

live, and CD45+ events in FlowJo (Supplemental Figure 4C).

Cyclone analysis
Cyclone pipeline was run as described above, specifying an

arcsinh transformation cofactor of 6000, with all other values kept

as default (Supplementary Table 4). For both panels, forward

scatter, side scatter, CD45, Live/Dead Blue, and autofluorescence

were excluded for UMAP generation and clustering. In addition, for

the T cell-focused panel, channels for tetramers were excluded for

UMAP generation and clustering. For the T-cell panel, 21 clusters

were identified, all of which were identified as specific lymphocyte

populations (B cells, NK cells, T cells, or ILCs) or were assumed to

belong to the myeloid compartment (Supplemental Figure 4A). For

the myeloid panel, 20 clusters were identified. Among these clusters,

three were unidentifiable by markers in the panel (Supplemental

Figure 4B) and excluded from subsequent analysis (Figures 5B, D).

Manual gating
Expert manual gating was performed in FlowJo to assign unique

cell-type identities to events. Example plots for T cell-focused gating

strategy (Supplemental Figure 4D) and Myeloid-focused panel

(Supplemental Figure 4E) are provided.

Annotation comparison
FCS files for manual gates were exported from FlowJo and then

read into a flowFrame object in R using the FlowCore package. Raw

data were used to uniquely match events and assign annotations

frommanual gating and Cyclone clustering. Cells that received both

manual gating and Cyclone clustering annotations were used to

generate annotation concordance heatmaps (Figures 5C, D).

Tetramer+ cell visualization
Tetramer+ events were identified as having raw fluorescent

intensities 3 or more standard deviations above the mean intensity.
Imaging data generation and analysis

Sample preparation
All patients consented by the UCSF IPI clinical coordinator group

for tissue collection under a UCSF IRB-approved protocol (UCSF IRB

#20-31740). Samples were obtained after surgical excision with biopsies

taken by pathology assistants to confirm the presence of tumor cells.

Freshly resected samples were placed in ice-cold PBS or Leibovitz’s L-

15 medium in a 50-mL conical tube, immediately transported to the

laboratory for sample labeling, and formalin fixed for imaging analysis.

Clinical data on three samples were denoted as follows: CRC1 =

IPICRC072, CRC2 = IPICRC057, and KID1 = IPIKID090.
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Staining and imaging immunofluorescent
7-plex panel

A 7-plex immunofluorescent panel was created using the Ventana

BenchMark Ultra (Roche Diagnostics) automated staining platform. All

reagents were from Discovery (Ventana Medical Systems, Tucson, AZ,

USA) and used according to the manufacturer’s instructions, except as

noted. Heat-Induced Epitope Retrieval (HIER) was performed with the

Cell Conditioning 1 (CC1) solution (cat. 950-124) for 64 min at 97°C.

The primary antibodies used were CD3 (1:100, clone: D7A6E from Cell

Signaling Technology, Danvers, MA, USA), CD4 (RTU, clone: SP35

from Ventana), CD8 (1:100, clone: D8A8Y from Cell Signaling

Technology), CD163 (1:250, clone: EPR19518 from Abcam,

Cambridge, UK), HLA-DR (1:500, clone: EPR3692 from Abcam),

XCR1 (1:40, clone: D2F8T from Cell Signaling Technology), and

EpCAM (1:50, clone: D9S3P, from Cell Signaling Technology). The

tissue was counterstained with DAPI (Akoya cat. FP1490) for nucleus

localization. The staining was conducted in two cycles: the first cycle had

CD3, CD4, CD8, CD163, HLA-DR, and XCR1; the second cycle had

EpCAM. Both cycles had DAPI. The slide was scanned using a whole

slide scanner after each staining cycle. Finally, the images from both

cycles were registered to achieve the 7-plex image shown in Figure 6.
Data preprocessing
Cell segmentation was performed by utilizing ark-analysis (v0.2.9)

DeepCell (31) software with nuclei (DAPI) andmembrane (CD3, CD4,

CD8, and CD163) as modalities for segmentation. Mean fluorescent

intensity wasmeasured from each cell region of interest (ROI) and then

arcsinh transformed to input into Cyclone pipeline as “trans_exp”.csv

file. Manual gating was performed in a custom Napari application

version 0.4.14 to classify cells as positive or negative for each marker.

For stroma versus tumor region separation, Qupath (version 0.3)

software was used to annotate each region using EpCAM for

colorectal or PanCK for kidney as a marker reference. Finally, data

cluster labels generated from the Cyclone pipeline or manual gating

were generated as a csv file corresponding to each cell ROI and

integrated with a segmented imaging file for cluster overlay in Napari.

Cyclone analysis
After determining an optimal grid size, the Cyclone output

heatmap showing arcsinh transformed and scaled marker

expression data were used to annotate clusters and scaled by row.

Log2 fold change of each cluster in stroma versus tumor was

determined by calculating the frequency of stromal over

frequency of tumor in each cluster and transformed by a log of 2.

Contour plots comparing Cyclone versus manual gating were

generated in python (version 3.8.12) by plotting arcsinh

transformed cell ROIs annotated as XCR1 and CD163.
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SUPPLEMENTARY FIGURE 1

CyTOF manual gating of human PBMC. (A) Pre-Gating: gating out beads,
debris, dead cells, RBC and granulocytes. (B) Hierarchical gating was applied

to identify 22 “landmark” immune populations: CD14+ CD16- classical
monocytes, CD14-CD16+ nonclassical monocytes, CD14+ CD16+
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intermediate monocytes, cDC1, cDC2, pDC, basophils, Natural Killer cells,
regulatory CD4+ T cells, CD4+ T cells (Naive, TCM, TEM, TEMRA), CD8

+ T cells

(Naive, TCM, TEM, TEMRA), gd+ T cells, B cells, ASC (antibody producing cells)

HLA-DRpos (CXCR5- B cells), plasmablasts. Also shown gating of eosinophils
(CD15+ CD16+ HLA-DR-) and neutrophils (CD15+ CD16- HLA-DR-).

SUPPLEMENTARY FIGURE 2

Assessment of “Fine”-level annotations and metrics for evaluating cyclone
outputs. (A) Full Davis-Bouldin index plot showing up to 200 potential

clusters identified through FlowSOM. (B) Heatmap of full dataset “fine”-level

annotations identifying cell types and cell subtypes, based on ground truth
(GT) manual gating (rows) compared to annotated FlowSOM clusters

(columns). (C) Comparison metrics based on “fine”-level annotations from
two individuals. Various performance metrics were used to assess the

accuracy of clusters called in the FlowSOM clustering compared to ground
truth. (D) Ground Truth expert cluster “fine”-level annotation identifying

broad cell types and specific cell subtypes based on manual gating. (E)
FlowSOM clustering “fine”-level annotations based on CyTOF panel
expression. F) Depiction of a cluster dispersed across UMAP space (Cluster

26) with a heterogenous protein expression profile compared to G) a cluster
with uniform protein expression and tight UMAP localization (Cluster 28).

SUPPLEMENTARY FIGURE 3

“Fine”-level annotations after running Cyclone on the downsampled dataset. The

dataset was down-sampled to 50k cells per sample and then run through
cyclone. Clusters’ cell type identities were inferred by experts using Cyclone

plot outputs. (A) UMAP annotated by cluster number. (B) Heatmap of median
archsinh transformed expression (unscaled) per cluster, used to annotate clusters.

(C) UMAP from 50k down-sample run, colored by fine annotations. (D)
Comparison of per-cell annotations between the 50k down-sample versus the

full dataset. Various performance metrics were used to assess the accuracy of

clusters called in the downsampled dataset compared to the full dataset.

SUPPLEMENTARY FIGURE 4

Spectral flow cytometry cell type identification. (A) Heatmap of markers used

for UMAP generation, clustering, and identification for “fine”-level Cyclone
clusters for the spectral flow cytometry dataset with a T cell-focused panel

presented in Figure 5A. (B) Heatmap of markers used for UMAP generation,

clustering, and identification for “fine”-level Cyclone clusters for the spectral
flow cytometry dataset with a Myeloid-focused panel presented in 5B. (C)
Representative two-dimensional flow plots demonstrating pre-gating on live
CD45+ cells before analysis with either Cyclone or expert manual gating in

FlowJo. (D)Manual gating strategy for samples in the T cell-focused panel. (E)
Manual gating strategy for samples in the Myeloid-focused panel.

SUPPLEMENTARY FIGURE 5

Resolution of manual gating and Cyclone clustering. (A) Table (top, left)

depicting cell type annotations based on the 7 markers used and cell
frequency histograms with manual gating thresholds (red line) on above

(yellow) or below (blue) threshold for CD163 and CD3 marker. Thresholds
were set on CD163 and CD3 at 11, 12, and 13 to denote the cutoff and

visualization of annotated macrophage+ cells (pink dots). Circled white

regions indicate examples of over-thresholding (threshold 11) and under-
thresholding (threshold 13). Scale bar denotes 20mm. (B) Frequency bar plot

of each cluster annotation divided into stromal (pink) or tumor (blue)
compartments. (C) Log2 fold change bar plot on stromal/tumor ratio for

each annotated cluster in CRC1, CRC2, and KID1 tumor samples. (D)
Scatterplot of cDC1+ (pink), XCR1+CD163+ (blue) cells, and other between

cyclone pipeline (left) and manual gating (right).
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8. Vallvé-Juanico J, George AF, Sen S, Thomas R, Shin M-G, Kushnoor D, et al.
Deep immunophenotyping reveals endometriosis is marked by dysregulation of the
mononuclear phagocytic system in endometrium and peripheral blood. BMC Med
(2022) 20(1):158. doi: 10.1186/s12916-022-02359-4

9. Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S.
Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc (2021) 16
(8):3775–801. doi: 10.1038/s41596-021-00550-0

10. Stassen SV, Siu DMD, Lee KCM, Ho JWK, So HKH, Tsia KK. PARC: ultrafast
and accurate clustering of phenotypic data of millions of single cells. Bioinformatics
(2020) 36(9):2778–86. doi: 10.1093/bioinformatics/btaa042

11. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir ED, Tadmor MD, et al.
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate
with prognosis. Cell (2015) 162(1):184–97. doi: 10.1016/j.cell.2015.05.047

12. Amir ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al.
viSNE enables visualization of high dimensional single-cell data and reveals phenotypic
heterogeneity of leukemia. Nat Biotechnol (2013) 31(6):545–52. doi: 10.1038/nbt.2594

13. Anchang B, Hart TDP, Bendall SC, Qiu P, Bjornson Z, Linderman M, et al.
Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat
Protoc (2016) 11(7):1264–79. doi: 10.1038/nprot.2016.066

14. Polikowsky HG, Drake KA. Supervised machine learning with CITRUS for
single cell biomarker discovery. Methods Mol Biol (2019) 1989:309–32. doi: 10.1007/
978-1-4939-9454-0_20

15. Spitzer MH, Gherardini PF, Fragiadakis GK, Bhattacharya N, Yuan RT, Hotson
AN, et al. An interactive reference framework for modeling a dynamic immune system.
Science (2015) 349(6244):1259425. doi: 10.1126/science.1259425

16. Bunis DG, Andrews J, Fragiadakis GK, Burt TD, Sirota M. dittoSeq: universal
user-friendly single-cell and bulk RNA sequencing visualization toolkit. Bioinformatics
(2020) 36:5535–5536. doi: 10.1093/bioinformatics/btaa1011

17. Finck R, Simonds EF, Jager A, Krishnaswamy S, Sachs K, Fantl W, et al.
NorMalization of mass cytometry data with bead standards. Cytometry A (2013) 83
(5):483–94. doi: 10.1002/cyto.a.22271

18. Bodenmiller B, Zunder ER, Finck R, Chen TJ, Savig ES, Bruggner RV, et al.
Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule
regulators. Nat Biotechnol (2012) 30(9):858–67. doi: 10.1038/nbt.2317

19. Davies DL, Bouldin DW. A cluster separation measure. IEEE Trans Pattern Anal
Mach Intell (1979) 1(2):224–7. doi: 10.1109/TPAMI.1979.4766909

20. Patterson-Cross RB, Levine AJ, Menon V. Selecting single cell clustering
parameter values using subsampling-based robustness metrics. BMC Bioinf (2021) 22
(1):39. doi: 10.1186/s12859-021-03957-4

21. Van Gassen S, Gaudilliere B, Angst MS, Saeys Y, Aghaeepour N. Cytonorm: A
norMalization algorithm for cytometry data. Cytometry A (2020) 97(3):268–78. doi:
10.1002/cyto.a.23904

22. Pedersen CB, Dam SH, Barnkob MB, Leipold MD, Purroy N, Rassenti LZ, et al.
cyCombine allows for robust integration of single-cell cytometry datasets within and
across technologies. Nat Commun (2022) 13(1):1698. doi: 10.1038/s41467-022-29383-5
Frontiers in Immunology 18
23. Weber LM, Robinson MD. Comparison of clustering methods for high-
dimensional single-cell flow and mass cytometry data. Cytometry A (2016) 12):1084–
96. doi: 10.1002/cyto.a.23030

24. Liu X, Song W, Wong BY, Zhang T, Yu S, GN L, et al. A comparison framework
and guideline of clustering methods for mass cytometry data. Genome Biol (2019) 20
(1):297. doi: 10.1186/s13059-019-1917-7

25. Kaufman L, Rousseeuw PJ eds. Finding groups in data: an introduction to cluster
analysis. Hoboken, NJ, USA: John Wiley & Sons, Inc (1990).

26. Hubert L, Arabie P. Comparing partitions. J Classification (1985) 2(1):193–218.
doi: 10.1007/BF01908075

27. Fowlkes EB, Mallows CL. A method for comparing two hierarchical clusterings. J
Am Stat Assoc (1983) 78(383):553–69. doi: 10.1080/01621459.1983.10478008

28. Cover TM, Thomas JA. Elements of information theory. Hoboken, NJ, USA: John
Wiley & Sons, Inc (2005).

29. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al.
Orchestrating single-cell analysis with Bioconductor. Nat Methods (2020) 17(2):137–
45. doi: 10.1038/s41592-019-0654-x

30. Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D. Activation
of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus
infection. Immunity (2002) 16(4):583–94. doi: 10.1016/S1074-7613(02)00305-9

31. Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, et al. Whole-
cell segmentation of tissue images with human-level performance using large-scale data
annotation and deep learning. Nat Biotechnol (2022) 40(4):555–65. doi: 10.1038/
s41587-021-01094-0

32. Mennillo E, Kim YJ, Rusu I, Lee G, Dorman LC, Bernard-Vazquez F, et al. Single-
cell and spatial multi-omics identify innate and stromal modules targeted by anti-integrin
therapy in ulcerative colitis. BioRxiv (2023). doi: 10.1101/2023.01.21.525036

33. Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, et al.
Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell
(2018) 174(4):968–981.e15. doi: 10.1016/j.cell.2018.07.010

34. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre C-A, Ventre E, et al. The
XC chemokine receptor 1 is a conserved selective marker of mamMalian cells
homologous to mouse CD8alpha+ dendritic cells. J Exp Med (2010) 207(6):1283–92.
doi: 10.1084/jem.20100223

35. Bourdely P, Anselmi G, Vaivode K, Ramos RN, Missolo-Koussou Y, Hidalgo S,
et al. Transcriptional and functional analysis of cd1c+ human dendritic cells identifies a
CD163+ subset priming CD8+CD103+ T cells. Immunity (2020) 53(2):335–352.e8. doi:
10.1016/j.immuni.2020.06.002

36. Beltra J-C, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al.
Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying
transcriptional and epigenetic landscape control mechanisms. Immunity (2020) 52
(5):825–41. doi: 10.1016/j.immuni.2020.04.014

37. Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R, Tenvooren I, et al.
Systemic dysfunction and plasticity of the immune macroenvironment in cancer
models. Nat Med (2020) 26(7):1125–34. doi: 10.1038/s41591-020-0892-6

38. Schuyler RP, Jackson C, Garcia-Perez JE, Baxter RM, Ogolla S, Rochford R, et al.
Minimizing batch effects in mass cytometry data. Front Immunol (2019) 10:2367. doi:
10.3389/fimmu.2019.02367

39. Chisari FV, Filippi P, McLachlan A, Milich DR, Riggs M, Lee S, et al. Expression of
hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion
in transgenic mice. J Virol (1986) 60(3):880–7. doi: 10.1128/jvi.60.3.880-887.1986
frontiersin.org

https://doi.org/10.1126/scitranslmed.3009701
https://doi.org/10.1172/JCI137265
https://doi.org/10.1186/s12916-022-02359-4
https://doi.org/10.1038/s41596-021-00550-0
https://doi.org/10.1093/bioinformatics/btaa042
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1038/nbt.2594
https://doi.org/10.1038/nprot.2016.066
https://doi.org/10.1007/978-1-4939-9454-0_20
https://doi.org/10.1007/978-1-4939-9454-0_20
https://doi.org/10.1126/science.1259425
https://doi.org/10.1093/bioinformatics/btaa1011
https://doi.org/10.1002/cyto.a.22271
https://doi.org/10.1038/nbt.2317
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1186/s12859-021-03957-4
https://doi.org/10.1002/cyto.a.23904
https://doi.org/10.1038/s41467-022-29383-5
https://doi.org/10.1002/cyto.a.23030
https://doi.org/10.1186/s13059-019-1917-7
https://doi.org/10.1007/BF01908075
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1038/s41592-019-0654-x
https://doi.org/10.1016/S1074-7613(02)00305-9
https://doi.org/10.1038/s41587-021-01094-0
https://doi.org/10.1038/s41587-021-01094-0
https://doi.org/10.1101/2023.01.21.525036
https://doi.org/10.1016/j.cell.2018.07.010
https://doi.org/10.1084/jem.20100223
https://doi.org/10.1016/j.immuni.2020.06.002
https://doi.org/10.1016/j.immuni.2020.04.014
https://doi.org/10.1038/s41591-020-0892-6
https://doi.org/10.3389/fimmu.2019.02367
https://doi.org/10.1128/jvi.60.3.880-887.1986
https://doi.org/10.3389/fimmu.2023.1167241
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data
	Introduction
	Results
	Building a scalable pipeline for analysis of high-dimensional cytometry data
	The Cyclone pipeline is a method for data clustering and evaluation across resolutions for use in the analysis of cytometry data
	Cyclone provides accessibility and interoperability with upstream processing and downstream analyses
	The Cyclone pipeline generalizes to flow cytometry datasets
	Cyclone enables unsupervised discovery of cell-type compartmentalization within the tumor microenvironment

	Discussion
	Methods
	Mass cytometry data generation and preprocessing
	Sample collection
	Sample preparation
	CyTOF panel and staining
	Data acquisition
	Data preprocessing (premessa -&gt; bead normalization)
	FCS modifications (addition of unique cell IDs for tracking)
	Batch correction
	Manual gating
	Generation of subsets

	Evaluation of runtime and memory usage for different clustering tools
	Pipeline
	Inputs
	Processing steps

	CyTOF cluster annotation and benchmarking using manually gated populations
	dittoSeq visualizations
	Spectral flow data generation and analysis
	Mice
	Sample preparation
	Staining and acquisition
	Data acquisition and preprocessing
	Cyclone analysis
	Manual gating
	Annotation comparison
	Tetramer+ cell visualization

	Imaging data generation and analysis
	Sample preparation
	Staining and imaging immunofluorescent 7-plex panel
	Data preprocessing
	Cyclone analysis


	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References


