52 research outputs found

    Culture-independent detection of nontuberculous mycobacteria in clinical respiratory samples

    Get PDF
    Culture-based detection of nontuberculous Mycobacteria (NTM) in respiratory samples is time consuming and can be subject to overgrowth by nonmycobacterial bacteria. We describe a single-reaction TaqMan quantitative PCR assay for the direct detection of NTM species in clinical samples that is specific, sensitive, and robust

    Interactions between Mediterranean diet supplemented with dairy foods and the gut microbiota influence cardiovascular health in an Australian population

    Get PDF
    The impact of a Mediterranean diet on the intestinal microbiome has been linked to its health benefits. We aim to evaluate the effects of a Mediterranean diet supplemented with dairy foods on the gut microbiome in Australians at risk of cardiovascular disease. In a randomised controlled cross-over study, 34 adults with a systolic blood pressure ≥120 mmHg and with risk factors for cardiovascular disease were randomly allocated to a Mediterranean diet with 3–4 daily serves of dairy foods (Australian recommended daily intake (RDI) of 1000–1300 mg per day (MedDairy)) or a low-fat (LFD) control diet. Between each 8-week diet, participants underwent an 8-week washout period. Microbiota characteristics of stool samples collected at the start and end of each diet period were determined by 16S rRNA amplicon sequencing. MedDairy-associated effects on bacterial relative abundance were correlated with clinical, anthropometric, and cognitive outcomes. No change in the overall faecal microbial structure or composition was observed with either diet (p \u3e 0.05). The MedDairy diet was associated with changes in the relative abundance of several bacterial taxa, including an increase in Butyricicoccus and a decrease in Colinsella and Veillonella (p \u3c 0.05). Increases in Butyricicoccus relative abundance over 8 weeks were inversely correlated with lower systolic blood pressure (r = −0.38, p = 0.026) and positively correlated with changes in fasting glucose levels (r = 0.39, p = 0.019), specifically for the MedDairy group. No significant associations were observed between the altered taxa and anthropometric or cognitive measures (p \u3e 0.05). Compared to a low-fat control diet, the MedDairy diet resulted in changes in the abundance of specific gut bacteria, which were associated with clinical outcomes in adults at risk of CVD

    Intestinal microbiology shapes population health impacts of diet and lifestyle risk exposures in torres strait islander communities

    Get PDF
    Poor diet and lifestyle exposures are implicated in substantial global increases in non-communicable disease burden in low-income, remote, and Indigenous communities. This observational study investigated the contribution of the fecal microbiome to influence host physiology in two Indigenous communities in the Torres Strait Islands: Mer, a remote island where a traditional diet predominates, and Waiben a more accessible island with greater access to takeaway food and alcohol. Counterintuitively, disease markers were more pronounced in Mer residents. However, island-specific differences in disease risk were explained, in part, by microbiome traits. The absence of Alistipes onderdonkii, for example, significantly (p=0.014) moderated island-specific patterns of systolic blood pressure in multivariate-adjusted models. We also report mediatory relationships between traits of the fecal metagenome, disease markers, and risk exposures. Understanding how intestinal microbiome traits influence response to disease risk exposures is critical for the development of strategies that mitigate the growing burden of cardiometabolic disease in these communities

    Optimisation of a propidium monoazide based method to determine the viability of microbes in faecal slurries for transplantation

    Get PDF
    © 2018 Elsevier BV. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (December 2018) in accordance with the publisher’s archiving policyThe efficacy of faecal microbiota transplantation (FMT) as a therapeutic intervention may depend on the viability of the microorganisms in faecal slurries (FS) prepared from donor stool. However, determining the viability of these organisms is challenging. Most microorganisms in stool are refractory to culture using standard techniques, and culture-independent PCR-based methods derive signal from both viable and non-viable cells. Propidium monoazide (PMA) treatment has been shown to be effective in preventing PCR amplification of DNA from non-viable bacteria in a range of contexts. However, this methodology can be sensitive to factors such as bacterial load and sample turbidity. We describe the optimisation of a PMA treatment methodology for FS that restricts quantitative PCR-based bacterial enumeration to viable cells. When applied to concentrated FS (10–25% stool content), PMA treatment at 100 μM concentration was ineffective in preventing DNA amplification from heat-killed cells. Efficacy was not significantly improved by doubling the PMA concentration. However, PMA treatment efficacy was improved markedly following 10-fold sample dilution, and was found to be optimal at 100-fold dilution. Substantial reductions in viable bacterial load could be observed following both freeze-thaw and heat-treatment of FS. This method successfully prevented DNA amplification of heat-killed Pseudomonas and Staphylococcus spiked into stool and could reliably determine the proportion of live bacteria and viable E. coli counts present in fresh and heat-treated stool. With appropriate sample dilution, PMA treatment excluded >97% of non-viable cells from amplification in all assays, without significantly affecting the amplification of DNA from viable cells. This method can be applied to optimise sample processing of FMT donor material, and to characterise bacterial viability within faecal samples more widely

    Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions

    Get PDF
    This is an openaccess article distributed under the terms of the Creative Commons attribution 4.0 International license.The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman’s correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data

    Inbred Mouse Populations Exhibit Intergenerational Changes in Intestinal Microbiota Composition and Function Following Introduction to a Facility

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Inbred mice are used to investigate many aspects of human physiology, including susceptibility to disease and response to therapies. Despite increasing evidence that the composition and function of the murine intestinal microbiota can substantially influence a broad range of experimental outcomes, relatively little is known about microbiome dynamics within experimental mouse populations. We investigated changes in the intestinal microbiome between C57BL/6J mice spanning six generations (assessed at generations 1, 2, 3, and 6), following their introduction to a stringently controlled facility. Fecal microbiota composition and function were assessed by 16S rRNA gene amplicon sequencing and liquid chromatography mass spectrometry, respectively. Significant divergence of the intestinal microbiota between founder and second generation mice, as well as continuing inter-generational variance, was observed. Bacterial taxa whose relative abundance changed significantly through time included Akkermansia, Turicibacter, and Bifidobacterium (p < 0.05), all of which are recognized as having the potential to substantially influence host physiology. Shifts in microbiota composition were mirrored by corresponding differences in the fecal metabolome (r = 0.57, p = 0.0001), with notable differences in levels of tryptophan pathway metabolites and amino acids, including glutamine, glutamate and aspartate. We related the magnitude of changes in the intestinal microbiota and metabolome characteristics during acclimation to those observed between populations housed in separate facilities, which differed in regards to husbandry, barrier conditions and dietary intake. The microbiome variance reported here has implications for experimental reproducibility, and as a consequence, experimental design and the interpretation of research outcomes across wide range of contexts

    The Cysteine Protease α-Clostripain is Not Essential for the Pathogenesis of Clostridium perfringens-Mediated Myonecrosis

    Get PDF
    Clostridium perfringens is the causative agent of clostridial myonecrosis or gas gangrene and produces many different extracellular toxins and enzymes, including the cysteine protease α-clostripain. Mutation of the α-clostripain structural gene, ccp, alters the turnover of secreted extracellular proteins in C. perfringens, but the role of α-clostripain in disease pathogenesis is not known. We insertionally inactivated the ccp gene C. perfringens strain 13 using TargeTron technology, constructing a strain that was no longer proteolytic on skim milk agar. Quantitative protease assays confirmed the absence of extracellular protease activity, which was restored by complementation with the wild-type ccp gene. The role of α-clostripain in virulence was assessed by analysing the isogenic wild-type, mutant and complemented strains in a mouse myonecrosis model. The results showed that although α-clostripain was the major extracellular protease, mutation of the ccp gene did not alter either the progression or the development of disease. These results do not rule out the possibility that this extracellular enzyme may still have a role in the early stages of the disease process

    Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology

    Get PDF
    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Background Asthma pathophysiology and treatment responsiveness are predicted by inflammatory phenotype. However, the relationship between airway microbiology and asthma phenotype is poorly understood. Objective We aimed to characterize the airway microbiota in patients with symptomatic stable asthma and relate composition to airway inflammatory phenotype and other phenotypic characteristics. Methods The microbial composition of induced sputum specimens collected from adult patients screened for a multicenter randomized controlled trial was determined by using 16S rRNA gene sequencing. Inflammatory phenotypes were defined by sputum neutrophil and eosinophil cell proportions. Microbiota were defined by using α- and β-diversity measures, and interphenotype differences were identified by using similarity of percentages, network analysis, and taxon fold change. Phenotypic predictors of airway microbiology were identified by using multivariate linear regression. Results Microbiota composition was determined in 167 participants and classified as eosinophilic (n = 84), neutrophilic (n = 14), paucigranulocytic (n = 60), or mixed neutrophilic-eosinophilic (n = 9) asthma phenotypes. Airway microbiology was significantly less diverse (P = .022) and more dissimilar (P = .005) in neutrophilic compared with eosinophilic participants. Sputum neutrophil proportions, but not eosinophil proportions, correlated significantly with these diversity measures (α-diversity: Spearman r = −0.374, P < .001; β-diversity: r = 0.238, P = .002). Interphenotype differences were characterized by a greater frequency of pathogenic taxa at high relative abundance and reduced Streptococcus, Gemella, and Porphyromonas taxa relative abundance in patients with neutrophilic asthma. Multivariate regression confirmed that sputum neutrophil proportion was the strongest predictor of microbiota composition. Conclusions Neutrophilic asthma is associated with airway microbiology that is significantly different from that seen in patients with other inflammatory phenotypes, particularly eosinophilic asthma. Differences in microbiota composition might influence the response to antimicrobial and steroid therapies and the risk of lung infection
    • …
    corecore