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Culture-based detection of nontuberculous Mycobacteria (NTM) in respiratory samples is time consuming and can be subject to
overgrowth by nonmycobacterial bacteria. We describe a single-reaction TaqMan quantitative PCR assay for the direct detection
of NTM species in clinical samples that is specific, sensitive, and robust.

While rates of infection caused by members of the Mycobacte-
rium tuberculosis complex continue to fall in developed

countries (1, 2), disease caused by nontuberculous mycobacteria
(NTM) is an area of growing concern (3–6). Pulmonary infection
represents more than 90% of NTM cases (7) and has been de-
scribed in a range of clinical contexts (8–11). Appropriate man-
agement of suspected pulmonary NTM infection requires the
timely detection and identification of the etiological agent. The
current “gold standard” for detection of NTM in respiratory sam-
ples relies on protracted in vitro culture, potentially delaying tar-
geted therapy. It also requires samples to undergo decontamina-
tion prior to culture to lower levels of commensal microbiota (12)
and is associated with variable sensitivity (13). The ability to per-
form a rapid quantitative screen for the presence of any NTM
species would provide an important early indication of mycobac-
terial involvement and would be informative in cases where sam-
ples are culture negative, despite clinical or radiological signs.

To prevent false-positive results arising from the detection of
closely related species (14, 15), existing molecular assays target
narrow phylogenetic groups or specific pathogens (16–21), re-
quire prior mycobacterial isolation by culture (22–24), or are un-
able to provide accurate species-level NTM identification (25).
We describe a TaqMan quantitative PCR (qPCR) assay, based on
the single-copy hsp65 gene, for the direct detection of NTM spe-
cies in respiratory clinical samples.

The assay design was based on the full-length hsp65 gene se-
quences that are available for 116 of the 174 currently described
NTM species, including all 56 NTM species reported in respira-
tory disease (see Fig. S1 in the supplemental material). The PCR
primers (forward, HSP171 [5=-CGCCAAGGAGATCGAGCTGG-
3=], and reverse, HSP563 [5=-GGACAAGGTCGGCAACGAGGG-
3=]) generate a 348-bp hsp65 amplicon and are used in conjunc-
tion with a TaqMan probe (5=-FAM-AGAAGGCCGTCGAGAAG
GTCA-BHQ-3= [FAM, 6-carboxyfluorescein; BHQ, black hole
quencher]) at an annealing temperature of 60°C (Fig. 1). A de-
tailed description of assay development and methods is provided
in the supplemental material.

In silico analysis indicated complete homology to the tar-
geted hsp65 gene region for 77 Mycobacterium species. Fourteen
species had �2 nucleotide mismatches within the primer binding
region, with a corresponding reduction in annealing temperature

of up to 4.5°C. However, in all such cases, the corresponding
primer binding region showed 100% sequence homology (see Ta-
bles S1 and S2 in the supplemental material). Twenty-one myco-
bacterial species (including M. tuberculosis and Mycobacterium
leprae) and 40 assessed nonmycobacterial species had �3 nucleo-
tide mismatches to the primer sequences, requiring an annealing
temperature of �55.5°C (see Fig. S2 and Table S3 in the supple-
mental material).

The assay’s performance was assessed using DNA extracts from
15 NTM strains and negative controls that included closely related
nonmycobacterial species, common respiratory pathogens, nine
M. tuberculosis strains, Mycobacterium bovis, Escherichia coli, and
human DNA (Table 1). The assay’s sensitivity was assessed using
a dilution series of purified Mycobacterium abscessus DNA (se-
lected based both on its clinical importance and its position within
NTM phylogeny). The correlation between template concentra-
tion and cycle threshold (CT) values was linear between 3.34 � 103

and 2.65 � 108 CFU/ml equivalents (slope, �3.31; R2 � 0.99),
with a reaction efficiency of 100%. Analysis using Mycobacterium
intracellulare DNA, a species with a single-base primer mismatch,
resulted in a linear range of 6.26 � 103 to 4.39 � 108 CFU/ml
equivalents (slope, �3.403; R2 � 0.99), with a reaction efficiency
of 97%.

The potential for carryover of clinical sample components to
influence assay performance was assessed in three ways. First, the
amplification efficiency and dynamic range of M. abscessus DNA
were determined following the addition of DNA extracts from
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culture- and qPCR-negative bronchoalveolar lavage (BAL) and
sputum samples. Second, the assay’s performance was assessed
following the addition of purified human DNA at a concentration
that substantially exceeded the levels in respiratory clinical sam-

ples. Third, the impact of the addition of horse blood prior to
DNA extraction on M. abscessus DNA amplification efficiency was
assessed, using a dilution series starting at 50% (vol/vol). In each
case, no significant change in assay performance was observed

FIG 1 Primer and probe target sites. Primer binding sites for previously described NTM detection assay primers are also shown, as follows: #1, Telenti et al. (30);
#2, Kim et al. (31).

TABLE 1 Amplification data for reference and control strains

Species (strain) Sourcec CT value CFU/ml equivalent

Mycobacterial speciesa

M. abscessus ATCC 19977 16.9 2.65 � 108

M. avium Clinical strain 20.1 7.56 � 107

M. chelonae ATCC 35752 22.6 1.26 � 107

M. flavescens Collection strain 28.3 2.42 � 105

M. fortuitum ATCC 9820 18.6 2.08 � 108

M. goodii Clinical strain 21.3 3.21 � 107

M. gordonae Clinical strain 23 9.93 � 106

M. interjectum Clinical strain 21.2 3.34 � 107

M. intracellulare Clinical strain 23 9.99 � 106

M. kansasii Clinical strain 24.9 2.68 � 106

M. lentiflavum Clinical strain 21 3.81 � 107

M. marinum Collection strain 23.3 7.72 � 106

M. simiae Clinical strain 19 1.62 � 108

M. smegmatis Clinical strain 20.8 4.39 � 107

M. bovis (BCG) Collection strain NDd ND
M. tuberculosis (H37Rv) Clinical strain ND ND
M. tuberculosis (Uganda 1) Clinical strain ND ND
M. tuberculosis (Orygis) Clinical strain ND ND
M. tuberculosis (MDR) Clinical strain ND ND
M. tuberculosis (LAM/Uganda 1) Clinical strain ND ND
M. tuberculosis (EAI) Clinical strain ND ND
M. tuberculosis (EAI 1) Clinical strain ND ND
M. tuberculosis (BJ Delhi CAS) Clinical strain ND ND
M. tuberculosis (BJ Delhi CAS 1) Clinical strain ND ND

Nonmycobacterial speciesb

Rhodococcus equi Collection strain ND ND
Nocardia farcinica Collection strain ND ND
Corynebacterium glucuronolyticum Collection strain ND ND
Staphylococcus aureus Clinical strain ND ND
Pseudomonas aeruginosa Clinical strain ND ND
Haemophilus influenzae Clinical strain ND ND
Escherichia coli Clinical strain ND ND
Streptococcus pneumoniae Clinical strain ND ND
Human Placental DNA ND ND

a South Australian pathology collection.
b Flinders Medical Centre pathology laboratory.
c ATCC, American Type Culture Collection.
d ND, not detected.
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(Mann Whitney test, P � 0.3) (see Fig. S3 to S5 in the supplemen-
tal material).

Assay validation was performed using 42 respiratory sam-
ples from patients suspected of respiratory NTM infection, in-
cluding 30 BAL samples and 12 sputum samples (of which 8
were NTM positive according to standard diagnostic testing;
see Table S4 in the supplemental material). Positive results
from NTM culture were confirmed by qPCR, and species iden-
tity was confirmed by DNA sequencing. However, in three
cases, samples were NTM culture negative but qPCR positive.
Mycobacterium avium was detected in the BAL sample at a con-
centration of 8.7 � 104 CFU/ml equivalents, while Mycobacterium
flavescens and M. avium were detected in the two sputum samples
at 2.1 � 104 and 6.4 � 103 CFU/ml equivalents, respectively (Ta-
ble 2; see also Table S5).

Negative culture results in patients with suspected NTM infec-
tion are not uncommon, with NTM isolated from subsequent
samples in some instances (26). A number of factors could con-
tribute to discrepancies between culture-dependent and molecu-
lar analysis. For example, culture overgrowth by nonmycobacte-
rial species can substantially reduce NTM detection, while sample
decontamination techniques used to prevent this can reduce my-
cobacterial viability (12). In addition, NTM recovery can be re-
duced in patients receiving commonly used antibiotics, such as
macrolides and quinolones (12).

In the case of the culture-negative, qPCR-positive BAL sample,
high levels of Haemophilus influenzae growth were reported.
While this species is fastidious, the finding suggests the potential
presence of other nonmycobacterial species that might have con-
tributed to the failure to isolate NTM through bacterial over-
growth. In the case of the culture-negative sputum sample in
which M. flavescens was detected by PCR, M. abscessus had been
isolated from this patient on a previous occasion (although defin-
itive typing had not been performed), and the patient had received
apparently successful eradication therapy. While the basis for dis-
cordance remains unclear, it is important to highlight that, as with
all PCR-based assays, a positive result does not rely on the pres-
ence of viable bacterial cells (27, 28). DNA in nonviable bacteria or
present in the extracellular environment (as might occur follow-

ing successful antibiotic therapy) can also act as a PCR template
(29), a factor that must be taken into account when interpreting
disparities between culture and PCR-based results. In the case of
the patient in whose sample M. avium was detected by qPCR
alone, the corresponding sample was recorded as being “insuffi-
cient for adequate assessment” by culture (an outcome that is
sometimes interpreted wrongly at the clinical level as a culture-
negative result). However, sputum samples collected both prior to
and following this sample were also found to be culture negative,
suggesting a genuine discrepancy between culture and qPCR re-
sults.

Our study was unable to assess the assay’s ability to detect a
number of rare or recently described NTM species for which high-
quality DNA sequence data are not yet available. It was further
limited by a requirement for DNA sequencing to identify the
source of positive PCR results, a technology that is not available in
all laboratories. However, the single-reaction qPCR assay de-
scribed offers substantial advantages over other molecular assays
in terms of time and cost. Importantly, the assay does not amplify
DNA from M. tuberculosis, a range of closely related nonmycobac-
terial species, or common airway bacteria and is unaffected by the
presence of high concentrations of human DNA or blood deriva-
tives. Our assay provides a specific, sensitive, and robust means to
rapidly screen respiratory clinical samples for the presence of
NTM and represents an important adjunct to conventional diag-
nostic approaches.
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