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Abstract 

The efficacy of faecal microbiota transplantation (FMT) as a therapeutic intervention may depend on 

the viability of the microorganisms in faecal slurries (FS) prepared from donor stool. However, 

determining the viability of these organisms is challenging. Most microorganisms in stool are 

refractory to culture using standard techniques, and culture-independent PCR-based methods derive 

signal from both viable and non-viable cells. Propidium monoazide (PMA) treatment has been shown 

to be effective in preventing PCR amplification of DNA from non-viable bacteria in a range of 

contexts. However, this methodology can be sensitive to factors such as bacterial load and sample 

turbidity. We describe the optimisation of a PMA treatment methodology for FS that restricts 

quantitative PCR-based bacterial enumeration to viable cells. When applied to concentrated FS (10-

25% stool content), PMA treatment at 100 µM concentration was ineffective in preventing DNA 

amplification from heat-killed cells. Efficacy was not significantly improved by doubling the PMA 

concentration. However, PMA treatment efficacy was improved markedly following 10-fold sample 

dilution, and was found to be optimal at 100-fold dilution. Substantial reductions in viable bacterial 

load could be observed following both freeze-thaw and heat-treatment of FS. This method 

successfully prevented DNA amplification of heat-killed Pseudomonas and Staphylococcus spiked 

into stool and could reliably determine the proportion of live bacteria and viable E. coli counts present 

in fresh and heat-treated stool. With appropriate sample dilution, PMA treatment excluded >97% of 

non-viable cells from amplification in all assays, without significantly affecting the amplification of 

DNA from viable cells. This method can be applied to optimise sample processing of FMT donor 

material, and to characterise bacterial viability within faecal samples more widely. 

 

 Key words: bacterial viability, fecal microbiota transplantation, qPCR 
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1. Introduction 

Faecal microbiota transplantation (FMT) is a therapeutic intervention in which stool from one or more 

healthy donors is processed into a faecal slurry (FS) and delivered to the lower intestinal tract of the 

recipient. FMT is an established therapy for Clostridium difficile colitis (van Nood et al., 2013) and 

shows promise as a therapeutic intervention in inflammatory conditions such as ulcerative colitis 

(Costello et al., 2017). It is postulated that the efficacy of FMT is dependent on the ability of 

beneficial commensal bacteria from the donor to proliferate within the recipient (Khoruts et al., 2010; 

Seekatz et al., 2014; van Nood et al., 2013). This requires those microbes to be viable at the time of 

transplantation. The ability to accurately determine the viability of bacteria in donor faecal samples is 

critical to developing appropriate protocols for the preparation and standardisation of FMT material.  

Previous efforts to assess the viability of microorganisms in faecal material used for FMT have been 

limited either by the use of culture methods, that can readily isolate only a small subset of the total gut 

microbiota (Costello et al., 2015), or molecular methods that lack the capacity to distinguish between 

DNA from viable cells, non-viable cells, and the extracellular environment (Fouhy et al., 2015). A 

potentially effective strategy to overcome these challenges is to combine quantitative (q)PCR-based 

bacterial enumeration with propidium monoazide sample treatment (PMA-qPCR). PMA is a red 

fluorescent dye that is excluded from viable cells by the energised membrane of an intact cell wall. 

When the cell wall is compromised, PMA enters the cell and intercalates into DNA (Nocker et al., 

2007). The monoazide group allows PMA to covalently bind DNA upon exposure to light, thus 

limiting PCR amplification to DNA present within viable cells (Nocker et al., 2006).  

The combination of PMA treatment with PCR-based analysis has been shown to be effective in a 

range of contexts, including the assessment of bacterial viability in samples with mixed populations, 

such as in waste water or sputa (Bae and Wuertz, 2009; Cuthbertson et al., 2015; Rogers et al., 2008). 

However, its efficiency may be reduced when applied to samples in which levels of non-viable 

bacterial DNA and extracellular DNA are high, or where sample turbidity impedes light penetration 

(Bae and Wuertz, 2009; Varma et al., 2009).  

The use of PMA in combination with 16S rRNA gene amplicon sequencing has been reported 

previously in the assessment of viable bacterial composition of FS for FMT (Chu et al., 2017). Chu 
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and colleagues subjected undiluted simulated faecal transplant material from a single participant to 

various processing conditions including exposure to oxygen and freeze thaw cycles prior to treatment 

with PMA (Chu et al., 2017). However, this study did not include a validation of the methodology.  

We report here the optimisation of PMA-qPCR to determine the viable bacterial content of faecal 

slurries for FMT. In doing so we provide a method that can reliably be applied to optimise sample 

processing methodologies for FMT donor material, as well as the characterisation of bacterial 

viability within faecal samples more widely.  

 

2. Materials and Methods 

2.1 FMT faecal slurry (FS) processing  

Stool was collected with informed consent from participants being screened as FMT donors for a 

clinical trial (Australia New Zealand Clinical Trials Registry, 2018). Fresh stool from 3 faecal donors 

were collected on separate occasions and processed immediately. Stool was collected on site and 

processed with 15 minutes. Stool was blended with normal saline (NS) and glycerol to produce a FS 

consisting of 25% (wt/vol) stool, 65% NS, and 10% glycerol, as previously described (Costello et al., 

2016). Stool blending and PMA treatment were performed within an anaerobic chamber. Remaining 

stool was frozen at -80
o
C in either 50 mL centrifuge tubes or 250 mL sterile pots. To assess the effects 

of freeze-thaw, a 50mL aliquot of FS was stored at -80 
o
C for 48 hrs and then allowed to thaw at room 

temperature within the anaerobic cabinet. Heat killing was performed by subjecting a 1 mL aliquot of 

thawed FS to 99 
o
C for 30 minutes in a heating block.  

 

2.2 Dilution and PMA treatment of fresh, frozen and thawed, and heat-killed FS.  

Fresh, freeze-thawed and heat-treated FS was tested at four different dilutions. Neat FS (25% stool 

content) was serially diluted in phosphate buffered saline (PBS) 10, 100, and 1000-fold. Neat FS and 

each dilution were treated with PMA or control in triplicate, as described in Section 2.3. 
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2.3 PMA treatment  

Stock solution was prepared by dissolving 1 mg of PMA (Biotium Inc., Fremont, CA, USA) in 1 mL 

of 20% dimethyl sulfoxide. For PMA treatment, 5 µL of PMA was added to 95 µL of sample to 

achieve 100 µM final concentration of PMA in 100 µL  (Bae and Wuertz, 2009). All samples were 

prepared in clear RNase-free 1.5mL tubes (Ambion®, Thermo Fisher Scientific, Waltham MA, USA). 

Following a 30 min incubation at room temperature in the dark (Nkuipou-Kenfack et al., 2013), 

samples were exposed to an LED light (1.5 W, Model AL329, Aqua Zonic, Singapore) at a distance 

of 15 cm for 20 min. 

 

2.4 Spiking of stool with heat-killed Pseudomonas aeruginosa and dilution of stool prior to PMA 

treatment.  

P. aeruginosa ATCC 27863 was cultured onto horse blood agar (HBA, bioMerieux, Australia) for 24 

hours. Colonies were dispersed in 1 mL PBS and diluted 40-fold to give a suspension of 3.35 

McFarland units (~1x10
9
 CFU/mL). Heat-killing of the neat suspension was performed by heating 1 

mL aliquots to 99 °C for 30 min.  

To assess the effect of stool concentration on the exclusion of non-viable bacteria through PMA 

treatment, donor stool was spiked with heat-killed P. aeruginosa to produce FS consisting of 25% 

(vol/vol) heat-killed P. aeruginosa, 10% (wt/vol) stool suspended in PBS. This suspension was 

further serially diluted 10-fold in PBS to produce suspensions of 1%, 0.1% and 0.01% stool. Each 

dilution of spiked stool was separated into six 95 µL aliquots. Three aliquots were treated with PMA 

(as described in section 2.3) and three used as untreated controls.  

As the presence of stool in specimens could result in PCR inhibition or affect the performance of 

PMA, the performance of the P. aeruginosa qPCR assay in pure culture alone was compared to its 

performance in stool specimens. Therefore, the heat-killed P. aeruginosa culture was diluted to 25%, 

2.5%, and 0.25% in PBS to mirror the concentration of spiked bacteria in the stool samples and 

treated with PMA in an identical manner.  
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2.5 Spiking of viable and non-viable Staphylococcus aureus into 1/100 diluted FS 

Fifty µL of S. aureus ATCC 29213 overnight culture in cerebrospinal fluid (CSF) enrichment broth 

(bioMerieux, Australia) was inoculated into 3 mL CSF broth, which was grown at 37 °C with shaking 

for 6 hours prior to use to ensure log-phase of growth. Two 1.5 mL culture aliquots were centrifuged 

for 2 min at 10,000 g. The pellet was washed twice in NS and resuspended to provide a suspension of 

4 McFarland units (~1.2 x10
9
 CFU/mL).  

To confirm that PMA treatment was effective in preventing PCR amplification of DNA from non-

viable cells, while not affecting amplification of DNA from viable cells, dilute FS was spiked with 

live and heat-killed S. aureus cells as well as with a combination of live and heat-killed cells in a 1:1 

ratio. For each, 100 µL was spiked into 900 µL of diluted (1/100) FS. The three spiked samples were 

treated in triplicate with PMA or PBS control. Pure bacterial cells (live, heat-killed, and combined) 

were similarly PMA-treated.  

To determine whether a higher PMA concentration would provide greater efficacy in concentrated 

stool, 100 µL heat-killed S. aureus was spiked into 900 µL neat FS and divided into nine aliquots 

(three used as controls, three treated with 100 µM PMA as described above, and three treated with 

200 µM PMA).  

 

2.7 Assessing performance of PMA qPCR over a defined range of viable concentrations  

To determine the performance of this method over a range of viable/dead concentrations, FS was 

prepared fresh as described in section 2.1, diluted 100-fold in PBS, and mixed with heat-killed FS in 

defined proportions. The following FS mixtures were prepared in 1mL aliquots: 100% fresh, 80% 

fresh/20% heat-killed, 60% fresh/40% heat-killed, 40% fresh/60% heat-killed, 20% fresh/80% heat-

killed and 100% heat-killed.  Each mixture was treated with and without PMA in triplicate in 100 µL 

aliquots as described in section 2.3. The proportion of total bacteria viable in each specimen was 

determined using PMA qPCR targeting the 16S rRNA gene, as described in section 2.8. Estimated 

Escherichia coli  colony forming units (CFU/µL) were quantified using a probe based qPCR targeting 

the tuf gene as described previously (Maheux et al., 2009). For each FS mixture, 100 µL of sample 

was plated onto three MacConkey with salt agar plates (Thermo Fisher Scientific, Therbarton SA, 
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Australia) at three 10-fold dilutions to select for single colonies of coliforms. Plates were incubated 

aerobically at 37°C for 24 hr.  The heat-killed aliquot was also cultured under the same conditions and 

demonstrated no growth. Single coliform colonies were counted and confirmed to be E. coli by 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Bruker Daltonik 

MALDI Biotyper, Bruker Biosciences Pty Ltd, Preston VIC, Australia).  

 

2.8 DNA extraction and qPCR  

DNA was extracted from samples using the PowerLyzer® PowerSoil® DNA Isolation Kit (MO BIO 

Laboratories, Carslbad, CA, USA) in accordance with the manufacturer’s instructions and stored at 

20
o
C. 

Levels of total bacteria, P. aeruginosa, and S. aureus, were determined using previously described 

qPCR assays (Denman and McSweeney, 2006; Feizabadi et al., 2010; Thomas et al., 2007) on a 

QuantStudio
 
6 Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). Total bacterial 

and P. aeruginosa qPCR assays were performed using sybr green fluorophore reagents (PowerUp
TM

 

SYBR
TM

 Green Master Mix, Applied Biosystems, Foster City, CA, USA). S. aureus and E. coli 

specific qPCR was performed using probe-based assays (KAPA PROBE FAST ROX Low 

MasterMix, Kapa Biosystems, Japan). All qPCR assays were performed in triplicate and mean CT 

values were converted to log10 cell/µL.  

Proportions of live cells were determined by dividing the quantity of cells amplified in the presence of 

PMA by the quantity of cells amplified in matching untreated controls. Statistical significance (p-

value <0.05) was determined using paired t-tests for parametric data and the Wilcoxon matched-pairs 

single rank test for non-parametric data.  

 

3. Results 

3.1 Effect of stool concentration on PMA-qPCR efficacy in fresh, freeze-thawed, and heat-treated 

samples  
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The efficacy of PMA treatment was reduced in both neat and 10-fold diluted FS (2.5% stool content) 

compared to 100-fold and 1000-fold diluted FS. In neat FS, no difference in amplification between 

PMA-treated and control samples was observed for fresh (p=0.496), frozen (p=0.203) or heat-treated 

samples (p=0.203) (Figure 1A). In 10-fold diluted FS (Figure 1B), amplification of bacterial DNA 

was significantly reduced in fresh (p=0.004) and heat-killed FS (p=0.004) following PMA-treatment 

compared to controls, but not in frozen FS (p=0.074). In 100-fold diluted FS (Figure 1C), 

amplification of bacterial DNA was significantly reduced following PMA-treatment compared to 

controls (p=0.004 for all three treatment conditions). While reductions in bacterial DNA amplification 

were also observed in 1000-fold diluted FS (p=0.004 for all three treatment conditions, Figure 1D), at 

this dilution the FS is so dilute that amplification levels are near the threshold of the assay even 

without PMA treatment. Overall, the best separation of heat-killed control and PMA treated samples 

is observed at the 100-fold dilution of FS (Figure 2, arrow) 

 

 

Figure 1.  Effect of faecal slurry (FS) dilution on the ability of PMA to exclude non-viable cells from 

amplification in FS material processed as fresh, frozen or heat-killed (HK). A. Neat FS (25% stool) B. 

1/10 diluted FS (2.5% stool) C. 1/100 diluted FS (0.25% stool) D. 1/1000 diluted FS (0.025% stool) 
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Bars depict the mean (+/- standard deviation) log cells/µL amplified by 16S qPCR from three donors, 

each with three replicate samples. Statistical comparisons are made between amplification from PMA 

treated samples (shaded bars) compared to untreated control samples (clear bars) (**= p<0.01). 

 

 

Figure 2.  Effect of faecal slurry (FS) dilution on the ability of PMA to exclude non-viable cells from 

amplification in heat-killed FS material. Circle symbols depict the mean (±standard deviation) log 

cells/µL amplified by 16S qPCR from three donors, each with three replicate samples. The 1/100 

dilution shows the best separation between control and PMA treated specimens (arrow). Dotted line 

represents the assay’s threshold of detection.  

 

3.2 Effect of stool concentration on the ability of PMA to exclude spiked non-viable P. aeruginosa 

cells from qPCR amplification.  

PMA treatment did not prevent the amplification of DNA from non-viable P. aeruginosa cells in the 

presence of 10% stool, with no significant difference observed between PMA-treated and control 

samples (Table 1). Furthermore, the level of amplification of P. aeruginosa DNA in spiked FS was 

significantly reduced compared to an equivalent level of P. aeruginosa DNA in pure culture (3.45 ± 

0.04 vs 5.99 ± 0.05 log cell/µL p<0.0001, Figure 3), suggesting inhibition of PCR by components of 

stool DNA extract. Inhibition was also observed to a smaller degree in the 1% stool samples (4.34 ± 
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0.02 vs 4.81 ± 0.12; p=0.02), but not in the 0.1% stool sample (Figure 3). No P. aeruginosa DNA was 

detectable in unspiked FS.  

In all samples with 1% or less stool concentration, amplification of P. aeruginosa DNA in the PMA-

treated samples was significantly reduced compared to controls (p <0.005), consistent with the 

successful limitation of DNA amplification to viable cells (Table 1).  

When viability was assessed as a proportion of total bacterial cells (Table 1), no significant difference 

was observed between spiked samples with ≤1% stool content. More than 97% of DNA from heat-

killed cells was excluded from amplification following PMA treatment. The performance of PMA-

qPCR in samples with a stool concentration of ≤1% did not differ significantly from the performance 

of PMA on cells from pure culture alone.  

 

 

Figure 3. Effect of stool dilution on amplification of heat-killed P. aeruginosa cells without PMA 

treatment. The amplification in P. aeruginosa cells alone (Pa) is compared to amplification of the 

same cells at the same concentration in spiked in FS (*= p<0.05; ***= p<0.001). The neat spiked 

sample consists of 10% stool, dilution 1 (D1) of 1% stool and dilution 2 (D2) of 0.1% stool  
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Table 1. Effect of stool dilution on PMA’s ability to exclude heat-killed P. aeruginosa DNA from 

amplification using P. aeruginosa specific qPCR. 

 

 Stool content 

(%) 

 P. aeruginosa cells detectede Difference 

(p-value) 

Proportion viablef 

(PMA /control) 

 

Control PMA 

Neata  10% 3.45 ± 0.04 3.80 ± 0.17 0.1 >100% 

D1b 1% 4.34 ± 0.02 2.80 ± 0.17 0.005 3.0% 

D2c 0.1% 3.46 ± 0.08 1.74 ± 0.08 0.002 2.0% 

D3d 0.01% 2.19 ± 0.12 0.53± 0.13 0.0006 2.2% 

 

a
Heat-killed P. aeruginosa cells (5.8 log10 cells/µL) were spiked into a sample consisting of 10% 

stool (Neat). 
b,c,d

This sample was then serially 10-fold diluted: 1/10 dilution (D1), 1/100 dilution (D2), 

1/1000 dilution (D3). 
e
All P. aeruginosa cells detected (log10 cells/µL, mean± SD of 3 replicate 

samples) in spiked stool samples without PMA treatment (Control) were compared to viable cells 

detected in corresponding PMA-treated samples (PMA). 
f
The proportion of heat-killed P. aeruginosa 

cells detected as viable is determined by dividing viable cells detected in PMA treated samples by 

total cells detected in the control samples.  

 

 

3.3 Efficacy of PMA-qPCR in discriminating live and dead S. aureus cells spiked into 100-fold diluted 

FS 

Our initial experiment suggested that 100-fold diluted FS (0.25% stool) was optimal for PMA-qPCR 

determination of viable bacterial load. We sought to confirm this finding by assessing whether PMA 

treatment could reliably eliminate amplification from non-viable cells, while not significantly 

affecting the amplification of viable cells. 100-fold diluted FS was spiked with live, heat-killed, or a 

1:1 ratio of live and heat-killed S. aureus cells, to a concentration of ~ 1.2 x10
9
 CFU/mL. The use of 
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S. aureus also allowed an assessment of the efficacy of PMA treatment when applied to a Gram 

positive organism and a different, probe-based qPCR assay.  

PMA treatment did not significantly affect amplification from viable cells from culture (p= 0.33, data 

not shown), while still providing optimal (>99%) exclusion of DNA from heat-killed cells from 

amplification (p= 0.004). No amplification of S. aureus DNA was observed with unspiked FS.  

PMA treatment reduced amplification of DNA from non-viable cells in FS samples spiked with 1:1 

heat-killed: viable cells (p=0.003) and 100% heat-killed cells (p<0.001) when compared to FS spiked 

with live cells (Figure 4).  

We also examined whether the inefficiency of PMA treatment in concentrated stool could be 

overcome by doubling the concentration of PMA used. However, in neat FS piked with heat-killed S. 

aureus there was no difference in amplification between PMA treated and control samples regardless 

of PMA concentration (control vs 100 µM PMA, p=0.47; control vs 200 µM PMA p= 0.51).  

 

 

Figure 4. Proportion of cells determined to be viable S. aureus cells (mean ± SD of 3 replicate 

samples). Proportion of viable cells was determined by dividing viable cells amplified in PMA-treated 

samples over total number of cells amplified in non-PMA treated control samples. S. aureus cells 

consisted of live culture (Live), a mixture of 50% live culture and 50% heat-killed culture (HK50), or 

100% heat-killed culture (HK100). The ability of PMA to exclude dead cells from amplification was 
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assessed in S. aureus culture alone, or in S. aureus spiked into diluted faecal slurry consisting of 

0.25% stool (FS) (**= p<0.01; ***= p<0.001). 

 

3.4 Performance of PMA-qPCR in varying ratios of fresh and heat-killed FS. 

The PMA-qPCR method performed well in predicting the proportion of live bacteria in the sample 

with a strong linear correlation (Figure 5, R
2
= 0.966). As the proportion of fresh FS increased there 

was an increase in the variability between replicate samples, with the most variability in the 100% 

fresh sample (mean proportion viable 0.55 +/- SD 0.18). PMA-qPCR was used to determine E. coli 

CFU/µL and these results were compared to corresponding colony counts on selective agar. Estimates 

of viable bacterial load, as determined by PMA-qPCR, were closely correlated with bacterial colony 

counts (Figure 6). PMA-qPCR performed comparably to culture in identifying the proportion of live 

E. coli  in the sample, with a strong linear correlation (Figure 6 panel A: E. coli culture R
2
= 0.900, 

panel B: E. coli PMA qPCR R
2
= 0.978). 

 

 

Figure 5. Performance of PMA-qPCR when applied to defined ratios of fresh and heat-killed FS. 

Data points and error bars represent the proportion of viable bacterial cells detected in FS after 16S 

qPCR (mean ± SD of 3 replicate samples). Proportion viable was determined by dividing cells/ µL 

amplified in PMA treated samples by the amplification of the non-PMA treated in the 100% fresh 

sample.  
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Figure 6. Performance of PMA qPCR when applied to defined ratios of fresh and heat-killed FS. Data 

points and error bars represent the CFU/ µL after selective culture (panel A) and CFU/ µL of bacterial 

cells determined to be viable after E. coli-specific qPCR (panel B) (mean ± SD of 3 replicate 

samples).    

 

4. Discussion  

A methodology that can reliably determine the viability of stool bacteria, a substantial portion of 

which are refractory to standard culture techniques, is essential for the accurate assessment and 

optimisation of stool processing protocols for FMT. While the use of PMA treatment in conjunction 

with PCR-based bacterial enumeration has shown promise in other contexts, a failure to consider the 

reduced efficacy of this approach when applied to undiluted faecal slurries may have confounded 

previous applications in this context. We describe the optimisation of this approach and demonstrate 

the importance of sample dilution in achieving efficient exclusion of DNA from non-viable cells. 

Stool is an inherently heterogeneous and variable material, with substantial variation in water content 

between samples. The degree of stool dilution incorporated into standard protocols must therefore 

allow effective PMA treatment on even the densest stool samples. Our results suggest that 1/100 

dilution of stool or faecal slurry to ~0.25% stool content is necessary to achieve optimal results 

following PMA treatment. As a guide, the optical density of the FS specimens used at 0.25% stool 
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content was 3.76 -4 McFarland units. At this dilution, PMA reliably inhibited amplification from non-

viable cells in all experiments.  

Although PMA treatment also performed well when stool content was further diluted, over-dilution of 

specimens is inadvisable, particularly when attempting to amplify targets that are already present at 

low concentrations (as illustrated in Figure 2). PMA treatment also performed well in excluding DNA 

from spiked non-viable cells at 1% stool content. However, at this concentration, PCR assay 

inhibition was observed, a phenomenon that is well-described in relation to DNA extracts from stool 

(Monteiro et al., 1997).  

The inefficiency of PMA treatment at stool contents of ≥10%, could not be overcome by doubling the 

concentration of PMA used to 200 µM. This observation suggests that factors such as light 

penetration, rather than PMA concentration, limit the effectiveness of this approach in concentrated 

stool samples.  

PMA-based methods might, under certain circumstances,  be prone to underestimating numbers of 

non-viable bacteria (Nebe-von-Caron et al., 2000). Therefore, our method employs a relatively high 

PMA concentration (100 µM), long incubation time (30 min) and long period of light exposure (20 

min). These parameters are conservative, based on available evidence to optimise the elimination of 

non-viable cells from amplification (Bae and Wuertz, 2009; Nkuipou-Kenfack et al., 2013). By 

applying our method to live as well as heat-killed spiked S. aureus cells we confirmed that our 

method did not significantly affect live cells while still excluding more than 99% of DNA from non-

viable cells from amplification (Figure 4).  

The application of our methodology demonstrates that a single freeze-thaw cycle renders the majority 

of bacteria in FS non-viable (Figure 1). These results differ from those reported by Chu et al., who did 

not detect a significant difference in cell viability in FS for FMT after 20 freeze-thaw cycles (Chu et 

al., 2017). However, in contrast to our optimised approach, they applied PMA treatment to undiluted 

FS, which we have shown significantly impairs its efficacy. Similarly, Young and colleagues also 

reported applying PMA treatment to concentrated stool samples (Young et al., 2017). In addition, they 

analysed samples that had already been frozen, a process which is problematic given the impact that 

this has on the pool of viable bacteria within the sample.  
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Commensal intestinal bacteria are increasingly being recognised as important mediators of both 

human health and disease (Honda and Littman, 2016). Many of these organisms are only readily 

detectable using molecular methods. PMA-based methodologies have an important role to play in 

determining the viability of a wide-range of organisms in stool. Application of the optimised 

methodology described here will allow standardisation of appropriate preparation protocols for FMT-

based therapeutics.  
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Optimisation of a propidium monoazide based method to determine the viability of 

microbes in faecal slurries for transplantation 

 

Highlights 

 PMA treatment can prevent PCR amplification of DNA from non-viable cells  

 Standard PMA protocols are ineffective when applied to faecal slurries  

 Pre-treatment dilution of slurries effectively excludes non-viable bacteria 

 Freeze-thaw substantially reduces bacterial viability in faecal transplant slurries 
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