23 research outputs found
The allantoin transport protein, PucI, from Bacillus subtilis: evolutionary relationships, amplified expression, activity and specificity
This work reports the evolutionary relationships, amplified expression, functional characterisation and purification of the putative allantoin transport protein, PucI, from Bacillus subtilis. Sequence alignments and phylogenetic analysis confirmed close evolutionary relationships between PucI and membrane proteins of the nucleobase-cation-symport-1 family of secondary active transporters. These include the sodium-coupled hydantoin transport protein, Mhp1, from Microbacterium liquefaciens and related proteins from bacteria, fungi and plants. Membrane topology predictions for PucI were consistent with twelve putative transmembrane-spanning α-helices with both N- and C-terminal ends at the cytoplasmic side of the membrane. The pucI gene was cloned into the IPTG-inducible plasmid pTTQ18 upstream from an in-frame hexahistidine tag and conditions are described for optimal amplified expression of the PucI(His6) protein in Escherichia coli to a level of about 5% in inner membranes. Initial rates of inducible PucI-mediated uptake of 14C-allantoin into energised Escherichia coli whole cells conformed to Michaelis-Menten kinetics with an apparent affinity (Kmapp) of 24 ± 3M, therefore confirming that PucI is a medium affinity transporter of allantoin. Dependence of allantoin transport on sodium was not apparent. Competitive uptake experiments showed that PucI recognises some additional hydantoin compounds, including hydantoin itself, and to a lesser extent a range of nucleobases and nucleosides. PucI(His6) was solubilised from inner membranes using n-dodecyl-ÎČ-D-maltoside and purified. The isolated protein comprised a substantial proportion of α-helix secondary structure, consistent with the predictions, and a three-dimensional model was therefore constructed on a template of the Mhp1 structure, which aided localisation of the potential ligand binding site in PucI
Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG.
Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H(+) Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H(+) Symporter (OHS) family. Sequence alignment of these distantly related proteins (⌠10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features
The osmotically-induced fusion of erythrocytes is associated with a change in phospholipid asymmetry
A urea channel from <i>Bacillus cereus</i> reveals a novel hexameric structure
Urea is exploited as a nitrogen source by bacteria, and its breakdown products, ammonia and bicarbonate, are employed to counteract stomach acidity in pathogens such as Helicobacter pylori. Uptake in the latter is mediated by UreI, a UAC (urea amide channel) family member. In the present paper, we describe the structure and function of UACBc, a homologue from Bacillus cereus. The purified channel was found to be permeable not only to urea, but also to other small amides. CD and IR spectroscopy revealed a structure comprising mainly α-helices, oriented approximately perpendicular to the membrane. Consistent with this finding, site-directed fluorescent labelling indicated the presence of seven TM (transmembrane) helices, with a cytoplasmic C-terminus. In detergent, UACBc exists largely as a hexamer, as demonstrated by both cross-linking and size-exclusion chromatography. A 9 Ă
(1Â Ă
=0.1Â nm) resolution projection map obtained by cryo-electron microscopy of two-dimensional crystals shows that the six protomers are arranged in a planar hexameric ring. Each exhibits six density features attributable to TM helices, surrounding a putative central channel, while an additional helix is peripherally located. Bioinformatic analyses allowed individual TM regions to be tentatively assigned to the density features, with the resultant model enabling identification of residues likely to contribute to channel function.</jats:p
Pseudo half-molecules of the ABC transporter, COMATOSE, bind Pex19 and target to peroxisomes independently but are both required for activity
Peroxisomal ABC transporters of animals and fungi are âhalf-sizeâ proteins which dimerise to form a functional transporter. However, peroxisomal ABC transporters of land plants are synthesised as a single polypeptide which represents a fused heterodimer. The N- and C-terminal pseudo-halves of COMATOSE (CTS; AtABCD1) were expressed as separate polypeptides which bound Pex19 in vitro and targeted independently to the peroxisome membrane in yeast, where they were stable but not functional. When co-expressed, the pseudo-halves were fully functional as indicated by ATPase activity and rescue of the pxa1pxa2Î mutant for growth on oleate. The functional significance of heterodimer asymmetry is discussed
Negotiating the Politics of Inclusion: Women and Australian Labor Governments 1983-1995
The Hawke and Keating Labor governments have tended to practise a politics of inclusion in which women, along with other social groups, are seen to have an important part to play in building the new, internationally competitive Australian economy of the twenty-first century, Australian politics have therefore had a very different nature from that of the more exclusionary politics practised by British Conservative governments. While the politics of inclusion have given feminists room for manoeuvre, and facilitated some positive developments in areas such as affirmative action and childcare policies, feminists have had little success in challenging the overall direction of the governmentsâ right-wing economic policies. Furthermore, the âeconomicâ has functioned as a meta-category which dissolves difference and conflict. The Australian experience therefore has both practical and theoretical implications for British feminists who may be experiencing a Labour government themselves before too long. </jats:p