34 research outputs found

    Upscaling biodiversity: estimating the species–area relationship from small samples

    Get PDF
    The challenge of biodiversity upscaling, estimating the species richness of a large area from scattered local surveys within it, has attracted increasing interest in recent years, producing a wide range of competing approaches. Such methods, if successful, could have important applications to multi‐scale biodiversity estimation and monitoring. Here we test 19 techniques using a high quality plant data set: the GB Countryside Survey 1999, detailed surveys of a stratified random sample of British landscapes. In addition to the full data set, a set of geographical and statistical subsets was created, allowing each method to be tested on multiple data sets with different characteristics. The predictions of the models were tested against the “true” species–area relationship for British plants, derived from contemporaneously surveyed national atlas data. This represents a far more ambitious test than is usually employed, requiring 5–10 orders of magnitude in upscaling. The methods differed greatly in their performance; while there are 2,326 focal plant taxa recorded in the focal region, up‐scaled species richness estimates ranged from 62 to 11,593. Several models provided reasonably reliable results across the 16 test data sets: the Shen and He and the Ulrich and Ollik models provided the most robust estimates of total species richness, with the former generally providing estimates within 10% of the true value. The methods tested proved less accurate at estimating the shape of the species–area relationship (SAR) as a whole; the best single method was Hui's Occupancy Rank Curve approach, which erred on average by <20%. A hybrid method combining a total species richness estimate (from the Shen and He model) with a downscaling approach (the Šizling model) proved more accurate in predicting the SAR (mean relative error 15.5%) than any of the pure upscaling approaches tested. There remains substantial room for improvement in upscaling methods, but our results suggest that several existing methods have a high potential for practical application to estimating species richness at coarse spatial scales. The methods should greatly facilitate biodiversity estimation in poorly studied taxa and regions, and the monitoring of biodiversity change at multiple spatial scales

    Sildenafil attenuates pulmonary inflammation and fibrin deposition, mortality and right ventricular hypertrophy in neonatal hyperoxic lung injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphodiesterase-5 inhibition with sildenafil has been used to treat severe pulmonary hypertension and bronchopulmonary dysplasia (BPD), a chronic lung disease in very preterm infants who were mechanically ventilated for respiratory distress syndrome.</p> <p>Methods</p> <p>Sildenafil treatment was investigated in 2 models of experimental BPD: a lethal neonatal model, in which rat pups were continuously exposed to hyperoxia and treated daily with sildenafil (50–150 mg/kg body weight/day; injected subcutaneously) and a neonatal lung injury-recovery model in which rat pups were exposed to hyperoxia for 9 days, followed by 9 days of recovery in room air and started sildenafil treatment on day 6 of hyperoxia exposure. Parameters investigated include survival, histopathology, fibrin deposition, alveolar vascular leakage, right ventricular hypertrophy, and differential mRNA expression in lung and heart tissue.</p> <p>Results</p> <p>Prophylactic treatment with an optimal dose of sildenafil (2 × 50 mg/kg/day) significantly increased lung cGMP levels, prolonged median survival, reduced fibrin deposition, total protein content in bronchoalveolar lavage fluid, inflammation and septum thickness. Treatment with sildenafil partially corrected the differential mRNA expression of amphiregulin, plasminogen activator inhibitor-1, fibroblast growth factor receptor-4 and vascular endothelial growth factor receptor-2 in the lung and of brain and c-type natriuretic peptides and the natriuretic peptide receptors NPR-A, -B, and -C in the right ventricle. In the lethal and injury-recovery model we demonstrated improved alveolarization and angiogenesis by attenuating mean linear intercept and arteriolar wall thickness and increasing pulmonary blood vessel density, and right ventricular hypertrophy (RVH).</p> <p>Conclusion</p> <p>Sildenafil treatment, started simultaneously with exposure to hyperoxia after birth, prolongs survival, increases pulmonary cGMP levels, reduces the pulmonary inflammatory response, fibrin deposition and RVH, and stimulates alveolarization. Initiation of sildenafil treatment after hyperoxic lung injury and continued during room air recovery improves alveolarization and restores pulmonary angiogenesis and RVH in experimental BPD.</p

    β-Diversity and Species Accumulation in Antarctic Coastal Benthos: Influence of Habitat, Distance and Productivity on Ecological Connectivity

    Get PDF
    High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in β-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and β–diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on β-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance

    Surfactant treatment for HMD

    No full text
    corecore