52 research outputs found

    Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment

    Full text link
    Nano-SAPO-34 zeolite catalyst (20 nm crystal size) has been stabilized by hydrothermal treatment. After steamed at high temperatures (T >= 550 degrees C), its textural properties and high lifetime during the reaction of methanol to olefins (MTO) are preserved, despite the decrease in acidity, even after months of contact with moisture. The stabilization effect is attributed to the migration of silicon to larger silicon islands in which the contribution of silicon on the edge is lower after steaming. Stabilization is not successful by a thermal treatment in air in the absence of water. Steaming at temperature >400 degrees C is required for achieving hydrothermal stabilization. A stability test for SAPO-34 in MTO reaction is proposed. (C) 2015 Elsevier Inc. All rights reserved.Financial support by the Spanish MINECO (Consolider Ingenio 2010-MULTICAT CSD2009-00050, MAT2012-37160, CTQ2012-37925-C03-1, Severo Ochoa SEV-2012-0267), and Generalitat Valenciana by the PROMETEO program (PROMETEOII/2013/011) is acknowledged. Z. Li acknowledges China Scholarship Council (CSC) for a fellowship. J. Yu thanks the Major International Joint Research Project of China for financial supports (Grant No. 21320102001). Support from Servicio de Microscopia Electronica (UPV) is also acknowledged.Li, Z.; Martínez Triguero, LJ.; Yu, J.; Corma Canós, A. (2015). Conversion of methanol to olefins: Stabilization of nanosized SAPO-34 by hydrothermal treatment. Journal of Catalysis. 329:379-388. https://doi.org/10.1016/j.jcat.2015.05.025S37938832

    Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs

    Full text link
    [EN] A general procedure to synthesize the Al-containing layered CDO precursor (PreCDO) is presented, allowing its preparation under broad Si/Al molar ratios by using novel pyrrole-derived organic molecules as organic structure directing agents (OSDAs). The direct calcination of the PreCDO materials results in crystalline Al-containing small-pore CDO zeolites with controlled Al species in tetrahedral coordination. In contrast, mild acid treatments on the PreCDO materials allow achieving medium-pore interlayer expanded CDO zeolites (IEZ-CDO). These expanded zeolites show high crystallinity, high porosity and controlled Si/Al molar ratios. Finally, preliminary catalytic results indicate that the Al-containing CDO and IEZ-CDO samples show good activity and selectivity for the selective catalytic reduction (SCR) of NOx, and methanol-to-olefins (MTO) processes, respectively. (C) 2017 Elsevier Inc. All rights reserved.This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267) and MAT2015-71261-R programs, and by the Fundacion Ramon Areces through a research project in "Life and Materials Sciences" program. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Paris, C.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials. 246:147-157. https://doi.org/10.1016/j.micromeso.2017.03.014S14715724

    Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5

    Full text link
    Highly siliceous zeolites, namely MFI type have attracted the great attention due to their higher hydrothermal stability, higher selectivity to organic compounds, and often better catalytic properties in comparison with Al-rich zeolites. The native zeolite (Si/Al = 164) and its desilicated analogues were deeply characterized with regard to their structural and textural properties by X-ray diffraction, low temperature adsorption of nitrogen and solid-state Al-27 MAS NMR. Their acidic properties were evaluated in quantitative IR studies. Finally, the catalytic performance of desilicated zeolites ZSM-5 was evaluated in the cracking of n-decane, 1,3,5-tri-iso-propylbenzene and vacuum gas oil. In this article, it is shown that high silica zeolites prepared by NaOH and NaOH&TBAOH leaching presented good hydrothermal stability with only slightly lower resistance when comparing to native steamed zeolite. The mesoporosity was preserved after the steaming treatment. The influence of the generated mesoporosity on the higher activity was evidenced in both 1,3,5-tri-isopropylbenzene and diesel oil cracking of steamed hierarchical zeolites. In spite of their lowered acidity, the mesopores system benefited the diffusion of the bulky molecule and finally provided higher activity of hierarchical zeolites. (C) 2016 Elsevier Inc. All rights reserved.This work was financed by Grant No. 2015/18/E/ST4/00191 from the National Science Centre - Poland. F. Rey and J. Martinez-Triguero thank for the support of the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), MAT2015-71842-P and CTQ2015-68951-C3-1-R.Tarach, KA.; Martínez-Triguero, J.; Rey Garcia, F.; Góra-Marek, K. (2016). Hydrothermal stability and catalytic performance of desilicated highly siliceous zeolites ZSM-5. Journal of Catalysis. 339:256-259. https://doi.org/10.1016/j.jcat.2016.04.023S25625933

    Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size

    Full text link
    [EN] The physico-chemical properties of the small pore SAPO-18 zeotype have been controlled by properly selecting the organic molecules acting as organic structure directing agents (OSDAs). The two organic molecules selected to attempt the synthesis of the SAPO-18 materials were N,N-diisopropylethylamine (DIPEA) and N,N-dimethyl-3,5-dimethylpiperidinium (DMDMP). On the one hand, DIPEA allows small crystal sizes (0.1-0.3 mu m) to be attained with limited silicon distributions when the silicon content in the synthesis gel is high (Si/TO2 similar to 0.8). On the other hand, the use of DMDMP directs the formation of larger crystallites (0.9-1.0 mu m) with excellent silicon distributions, even when the silicon content in the synthesis media is high (Si/TO2 similar to 0.8). It is worth noting that this is the first description of the use of DMDMP as OSDA for the synthesis of the SAPO-18 material, revealing not only the excellent directing role of this OSDA in stabilizing the large cavities present in the SAPO-18 structure, but also its role in selectively placing the silicon atoms in isolated framework positions. The synthesized SAPO-18 materials have been characterized by different techniques, such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), N-2 adsorption, solid state NMR, and ammonia temperature programmed desorption (NH3-TPD). Finally, their catalytic activity has been evaluated for the methanol-to-olefin (MTO) process at different reaction temperatures (350 and 400 degrees C), revealing that the SAPO-18 catalysts with optimized silicon distributions and crystal sizes show excellent catalytic properties for the MTO reaction. These optimized SAPO-18 materials present improved catalyst lifetimes compared to standard SAPO-34 and SSZ-39 catalysts, even when tested at low reaction temperatures (i.e. 350 degrees C).Financial support by the Spanish Government-MINECO through “Severo Ochoa” (SEV 2012-0267), MAT2015-71261-R, and CTQ2015-68951-C3-1-R; by the European Union through ERC-AdG-2014-671093 (SynCatMatch); and by the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011) is acknowledged.Martínez Franco, R.; Li, Z.; Martínez Triguero, LJ.; Moliner Marin, M.; Corma Canós, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science and Technology. 6(8):2796-2806. https://doi.org/10.1039/C5CY02298CS2796280668Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063Chen, J. Q., Bozzano, A., Glover, B., Fuglerud, T., & Kvisle, S. (2005). Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process. Catalysis Today, 106(1-4), 103-107. doi:10.1016/j.cattod.2005.07.178Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1-2), 3-48. doi:10.1016/s1387-1811(98)00319-9M. Stöcker , Zeolites and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2010, pp. 687–711Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009Song, W., Haw, J. F., Nicholas, J. B., & Heneghan, C. S. (2000). Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 122(43), 10726-10727. doi:10.1021/ja002195gWilson, S., & Barger, P. (1999). The characteristics of SAPO-34 which influence the conversion of methanol to light olefins. Microporous and Mesoporous Materials, 29(1-2), 117-126. doi:10.1016/s1387-1811(98)00325-4Dai, W., Wang, X., Wu, G., Guan, N., Hunger, M., & Li, L. (2011). Methanol-to-Olefin Conversion on Silicoaluminophosphate Catalysts: Effect of Brønsted Acid Sites and Framework Structures. ACS Catalysis, 1(4), 292-299. doi:10.1021/cs200016uDeimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Effect of Pore and Cage Size on the Formation of Aromatic Intermediates During the Methanol-to-Olefins Reaction. Topics in Catalysis, 58(7-9), 416-423. doi:10.1007/s11244-015-0384-yWendelbo, R., Akporiaye, D., Andersen, A., Dahl, I. M., & Mostad, H. B. (1996). Synthesis, characterization and catalytic testing of SAPO-18, MgAPO-18, and ZnAPO-18 in the MTO reaction. Applied Catalysis A: General, 142(2), L197-L207. doi:10.1016/0926-860x(96)00118-4Gayubo, A. G., Aguayo, A. T., Alonso, A., & Bilbao, J. (2007). Kinetic Modeling of the Methanol-to-Olefins Process on a Silicoaluminophosphate (SAPO-18) Catalyst by Considering Deactivation and the Formation of Individual Olefins. Industrial & Engineering Chemistry Research, 46(7), 1981-1989. doi:10.1021/ie061278oChen, J., Li, J., Wei, Y., Yuan, C., Li, B., Xu, S., … Liu, Z. (2014). Spatial confinement effects of cage-type SAPO molecular sieves on product distribution and coke formation in methanol-to-olefin reaction. Catalysis Communications, 46, 36-40. doi:10.1016/j.catcom.2013.11.016Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2015). Mesopore-Modified SAPO-18 with Potential Use as Catalyst for the MTO Reaction. Topics in Catalysis, 59(2-4), 278-291. doi:10.1007/s11244-015-0447-0Chen, J., Wright, P. A., Thomas, J. M., Natarajan, S., Marchese, L., Bradley, S. M., … Gai-Boyes, P. L. (1994). SAPO-18 Catalysts and Their Broensted Acid Sites. The Journal of Physical Chemistry, 98(40), 10216-10224. doi:10.1021/j100091a042Bhawe, Y., Moliner-Marin, M., Lunn, J. D., Liu, Y., Malek, A., & Davis, M. (2012). Effect of Cage Size on the Selective Conversion of Methanol to Light Olefins. ACS Catalysis, 2(12), 2490-2495. doi:10.1021/cs300558xDusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719cChen, J., Thomas, J. M., Wright, P. A., & Townsend, R. P. (1994). Silicoaluminophosphate number eighteen (SAPO-18): a new microporous solid acid catalyst. Catalysis Letters, 28(2-4), 241-248. doi:10.1007/bf00806053Hunger, M., Seiler, M., & Buchholz, A. (2001). Catalysis Letters, 74(1/2), 61-68. doi:10.1023/a:1016687014695Fan, D., Tian, P., Xu, S., Xia, Q., Su, X., Zhang, L., … Liu, Z. (2012). A novel solvothermal approach to synthesize SAPO molecular sieves using organic amines as the solvent and template. Journal of Materials Chemistry, 22(14), 6568. doi:10.1039/c2jm15281aAbdollahi, S., Ghavipour, M., Nazari, M., Behbahani, R. M., & Moradi, G. R. (2015). Effects of static and stirring aging on physiochemical properties of SAPO-18 and its performance in MTO process. Journal of Natural Gas Science and Engineering, 22, 245-251. doi:10.1016/j.jngse.2014.11.036Yuen, L.-T., Zones, S. I., Harris, T. V., Gallegos, E. J., & Auroux, A. (1994). Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves. Microporous Materials, 2(2), 105-117. doi:10.1016/0927-6513(93)e0039-jBleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0Wu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029Martínez-Franco, R., Moliner, M., & Corma, A. (2014). Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. Journal of Catalysis, 319, 36-43. doi:10.1016/j.jcat.2014.08.005Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722uYu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453hKatada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894nSmith, R. L., Svelle, S., del Campo, P., Fuglerud, T., Arstad, B., Lind, A., … Anderson, M. W. (2015). CHA/AEI intergrowth materials as catalysts for the Methanol-to-Olefins process. Applied Catalysis A: General, 505, 1-7. doi:10.1016/j.apcata.2015.06.027Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200hOpanasenko, M. V., Roth, W. J., & Čejka, J. (2016). Two-dimensional zeolites in catalysis: current status and perspectives. Catalysis Science & Technology, 6(8), 2467-2484. doi:10.1039/c5cy02079dKim, W., & Ryoo, R. (2014). Probing the Catalytic Function of External Acid Sites Located on the MFI Nanosheet for Conversion of Methanol to Hydrocarbons. Catalysis Letters, 144(7), 1164-1169. doi:10.1007/s10562-014-1274-

    Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene

    Full text link
    [EN] Catalytic oxidation of trichloroethylene (TCE) in heterogeneous phase (gas-solid) is an effective strategy for the conversion of this pollutant in less harmful compounds, namely CO2, CO and HCl. In this work, we have studied the use of mayenite, a cost-effective material, as an active catalyst for the TCE conversion. In particular, we have assessed the influence of the mayenite synthesis method (hydrothermal, sol-gel and ceramic) on the reaction performance. The materials have been characterized by different techniques, such as XRD, N-2-sorption (BET), TPR, Raman spectroscopy, FESEM-EDX and TEM. The analysis of the light-off curves and product distribution, has shown that the use of the hydrothermal method for the mayenite synthesis results in the most active and selective catalyst. This has been related with a higher surface area and with a higher concentration of oxygen anions in the mayenite prepared by this method. It has been found that the presence of water in the stream do not influence the catalytic performance of the material. A mechanism for the reaction and for the partial deactivation of the catalyst has been proposed.This work was supported by the grants ORSA167988 and ORSA174250 funded by the University of Salerno. AI gratefully acknowledges the Erasmus+ traineeship program. AEP and JMT thanks the Spanish Ministry of Economy and Competitiveness and the Fondo Europeo de Desarrollo Regional through MAT2015-71842-P and CTQ2015-68951-C3-1-R (MINECO/FEDER)Intiso, A.; Martínez-Triguero, J.; Cucciniello, R.; Rossi, F.; Palomares Gimeno, AE. (2019). Influence of the synthesis method on the catalytic activity of mayenite for the oxidation of gas-phase trichloroethylene. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-018-36708-2S199Greene, H. L., Prakash, D. S. & Athota, K. V. Combined sorbent/catalyst media for destruction of halogenated VOCs. Appl. Catal. B Environ. 7, 213–224 (1996).Rossi, F. et al. Determination of the trichloroethylene diffusion coefficient in water. AIChE J. 61, 3511–3515 (2015).Russell, H. H., Matthews, J. E. & Guy, W. S. TCE Removal from Contaminated Soil and Ground Water (1996).IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Trichloroethylene, tetrachloroethylene, and some other chlorinated agents. IARC Monogr. Eval. Carcinog. Risks Hum. 106, 1–512 (2014).Chiu, W. A. et al. Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues. Environ. Health Perspect. 121, 303–311 (2012).Intiso, A. et al. Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant. Environ. Technol. Innov. 12, 72−79 (2018).Boulding, J. R. EPA environmental engineering sourcebook. (CRC Press, 1996).Huang, L. et al. Granular activated carbon adsorption process for removing trichloroethylene from groundwater. AIChE J. 57, 542–550 (2011).Moccia, E. et al. Use of Zea mays L. in phytoremediation of trichloroethylene. Environ. Sci. Pollut. Res. 24, 11053–11060 (2017).Costanza, J., Mulholland, J. & Pennell, K. Effects of Thermal Treatments on the Chemical Reactivity of Trichloroethylene (2007).Aranzabal, A. et al. State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chem. Pap. 68, 1169–1186 (2014).Blanch-Raga, N. et al. Catalytic abatement of trichloroethylene over Mo and/or W-based bronzes. Appl. Catal. B Environ. 130, 36–43 (2013).Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J., Fetter, G. & Bosch, P. Cu mixed oxides based on hydrotalcite-like compounds for the oxidation of trichloroethylene. Ind. Eng. Chem. Res. 52, 15772–15779 (2013).Romero-Sáez, M., Divakar, D., Aranzabal, A., González-Velasco, J. R. & González-Marcos, J. A. Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Appl. Catal. B Environ. 180, 210–218 (2016).López-Fonseca, R., Gutiérrez-Ortiz, J. I. & González-Velasco, J. R. Catalytic combustion of chlorinated hydrocarbons over H-BETA and PdO/H-BETA zeolite catalysts. Appl. Catal. Gen. 271, 39–46 (2004).Aranzabal, A., Romero-Sáez, M., Elizundia, U., González-Velasco, J. R. & González-Marcos, J. A. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. J. Catal. 296, 165–174 (2012).Divakar, D. et al. Catalytic oxidation of trichloroethylene over Fe-zeolites. Catal. Today 176, 357–360 (2011).Blanch-Raga, N., Palomares, A. E., Martínez-Triguero, J. & Valencia, S. Cu and Co modified beta zeolite catalysts for the trichloroethylene oxidation. Appl. Catal. B Environ. 187, 90–97 (2016).Solsona, B. et al. Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts 7, 96 (2017).Cucciniello, R. et al. Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Appl. Catal. B Environ. 204, 167–172 (2017).Intiso, A., Cucciniello, R., Castiglione, S., Proto, A. & Rossi, F. Environmental Application of Extra-Framework Oxygen Anions in the Nano-Cages of Mayenite. In Advances in Bionanomaterials 131–139, https://doi.org/10.1007/978-3-319-62027-5_12 (Springer, Cham, 2018).Yang, S. et al. Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO·7Al2O3. Chem. Mater. 16, 104–110 (2004).Lacerda, M., Irvine, J. T. S., Glasser, F. P. & West, A. R. High oxide ion conductivity in Ca12Al14O33. Nature 332, 525–526 (1988).Teusner, M., De Souza, R. A., Krause, H., Ebbinghaus, S. G. & Martin, M. Oxygen transport in undoped and doped mayenite. Solid State Ion. 284, 25–27 (2016).Li, C., Hirabayashi, D. & Suzuki, K. A crucial role of O2- and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Appl. Catal. B Environ. 88, 351–360 (2009).Li, C., Hirabayashi, D. & Suzuki, K. Synthesis of higher surface area mayenite by hydrothermal method. Mater. Res. Bull. 46, 1307–1310 (2011).Ude, S. N. et al. High temperature X-ray studies of mayenite synthesized using the citrate sol–gel method. Ceram. Int. 40, 1117–1123 (2014).Blanch-Raga, N. et al. The oxidation of trichloroethylene over different mixed oxides derived from hydrotalcites. Appl. Catal. B Environ. 160, 129–134 (2014).Monshi, A., Foroughi, M. R. & Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 02, 154 (2012).Ruszak, M., Witkowski, S. & Sojka, Z. EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Res. Chem. Intermed. 33, 689–703 (2007).Cucciniello, R., Proto, A., Rossi, F. & Motta, O. Mayenite based supports for atmospheric NOx sampling. Atmos. Environ. 79, 666–671 (2013).Teusner, M. et al. Oxygen Diffusion in Mayenite. J. Phys. Chem. C 119, 9721–9727 (2015).Schmidt, A. et al. Chlorine ion mobility in Cl-mayenite (Ca12Al14O32Cl2): An investigation combining high-temperature neutron powder diffraction, impedance spectroscopy and quantum-chemical calculations. Solid State Ion. 254, 48–58 (2014).Środek, D., Dulski, M. & Galuskina, I. Raman imaging as a new approach to identification of the mayenite group minerals. Sci. Rep. 8, 13593 (2018).Galuskin, E. V. et al. Mayenite supergroup, part I: Recommended nomenclature. Eur. J. Mineral. 27, 99–111 (2015).Li, J. et al. Chlorine-Tolerant Ruthenium Catalyst Derived Using the Unique Anion-Exchange Properties of 12 CaO⋅7 Al2O3 for Ammonia Synthesis. Chem Cat Chem 9, 3078–3083 (2017)

    Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution

    Full text link
    [EN] Nano-SAPO-34 molecular sieves synthesized in a microwave environment with 20 nm crystal size showed a longer lifetime than SAPO-34 prepared by the conventional hydrothermal method in the reaction of methanol to olefins. It has been found that silicon distribution strongly affects the lifetime and selectivity. Thus, silicon at the border of the silicon islands gives a higher lifetime and lower C2/C3 ratio. This change in activity and selectivity is better explained in terms of different silicon distribution than by preferential diffusion of ethene through the 8MR pores and agrees with transition-state selectivity. The effects of equilibrium of olefins and deactivation by coke were isolated, showing that after full formation of the hydrocarbon pool, selectivity is independent of deactivation by coke.Financial support by the Spanish MINECO (MAT2012-37160, CSD2009-00050-CONSOLIDER/INGENIO 2010), and Generalitat Valenciana by the PROMETEO program is acknowledged. Z. Li acknowledges China Scholarship Council (CSC) for a fellowship. J. Yu thanks the support by the State Basic Research Project of China (Grant no. 2011CB808703) and the National Natural Science Foundation of China.Li, Z.; Martínez Triguero, LJ.; Concepción Heydorn, P.; Yu, J.; Corma Canós, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics. 15(35):14670-14680. https://doi.org/10.1039/c3cp52247dS14670146801535Bjørgen, M., Joensen, F., Spangsberg Holm, M., Olsbye, U., Lillerud, K.-P., & Svelle, S. (2008). Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 345(1), 43-50. doi:10.1016/j.apcata.2008.04.020Vennestrøm, P. N. R., Grill, M., Kustova, M., Egeblad, K., Lundegaard, L. F., Joensen, F., … Beato, P. (2011). Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today, 168(1), 71-79. doi:10.1016/j.cattod.2011.03.045Barbera, K., Bonino, F., Bordiga, S., Janssens, T. V. W., & Beato, P. (2011). Structure–deactivation relationship for ZSM-5 catalysts governed by framework defects. Journal of Catalysis, 280(2), 196-205. doi:10.1016/j.jcat.2011.03.016Na, K., Choi, M., & Ryoo, R. (2013). Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials, 166, 3-19. doi:10.1016/j.micromeso.2012.03.054Jacobsen, C. J. H., Madsen, C., Houzvicka, J., Schmidt, I., & Carlsson, A. (2000). Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, 122(29), 7116-7117. doi:10.1021/ja000744cKim, J., Choi, M., & Ryoo, R. (2010). Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 269(1), 219-228. doi:10.1016/j.jcat.2009.11.009Firoozi, M., Baghalha, M., & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 10(12), 1582-1585. doi:10.1016/j.catcom.2009.04.021Rownaghi, A. A., & Hedlund, J. (2011). Methanol to Gasoline-Range Hydrocarbons: Influence of Nanocrystal Size and Mesoporosity on Catalytic Performance and Product Distribution of ZSM-5. Industrial & Engineering Chemistry Research, 50(21), 11872-11878. doi:10.1021/ie201549jSommer, L., Mores, D., Svelle, S., Stöcker, M., Weckhuysen, B. M., & Olsbye, U. (2010). Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. Microporous and Mesoporous Materials, 132(3), 384-394. doi:10.1016/j.micromeso.2010.03.017Wu, L., Degirmenci, V., Magusin, P. C. M. M., Szyja, B. M., & Hensen, E. J. M. (2012). Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. Chemical Communications, 48(76), 9492. doi:10.1039/c2cc33994cWu, L., Degirmenci, V., Magusin, P. C. M. M., Lousberg, N. J. H. G. M., & Hensen, E. J. M. (2013). Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction. Journal of Catalysis, 298, 27-40. doi:10.1016/j.jcat.2012.10.029Schmidt, F., Paasch, S., Brunner, E., & Kaskel, S. (2012). Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 164, 214-221. doi:10.1016/j.micromeso.2012.04.045Hirota, Y., Murata, K., Tanaka, S., Nishiyama, N., Egashira, Y., & Ueyama, K. (2010). Dry gel conversion synthesis of SAPO-34 nanocrystals. Materials Chemistry and Physics, 123(2-3), 507-509. doi:10.1016/j.matchemphys.2010.05.005Lee, K. Y., Chae, H.-J., Jeong, S.-Y., & Seo, G. (2009). Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Applied Catalysis A: General, 369(1-2), 60-66. doi:10.1016/j.apcata.2009.08.033Lee, Y.-J., Baek, S.-C., & Jun, K.-W. (2007). Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Applied Catalysis A: General, 329, 130-136. doi:10.1016/j.apcata.2007.06.034Wang, P., Lv, A., Hu, J., Xu, J., & Lu, G. (2012). The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction. Microporous and Mesoporous Materials, 152, 178-184. doi:10.1016/j.micromeso.2011.11.037Álvaro-Muñoz, T., Márquez-Álvarez, C., & Sastre, E. (2012). Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction. Catalysis Today, 179(1), 27-34. doi:10.1016/j.cattod.2011.07.038Lin, S., Li, J., Sharma, R. P., Yu, J., & Xu, R. (2010). Fabrication of SAPO-34 Crystals with Different Morphologies by Microwave Heating. Topics in Catalysis, 53(19-20), 1304-1310. doi:10.1007/s11244-010-9588-3Shalmani, F. M., Halladj, R., & Askari, S. (2012). Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves. Powder Technology, 221, 395-402. doi:10.1016/j.powtec.2012.01.036Yang, G., Wei, Y., Xu, S., Chen, J., Li, J., Liu, Z., … Xu, R. (2013). Nanosize-Enhanced Lifetime of SAPO-34 Catalysts in Methanol-to-Olefin Reactions. The Journal of Physical Chemistry C, 117(16), 8214-8222. doi:10.1021/jp312857pBuchholz, A., Wang, W., Arnold, A., Xu, M., & Hunger, M. (2003). Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous and Mesoporous Materials, 57(2), 157-168. doi:10.1016/s1387-1811(02)00562-0Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2002). Thermal stability and dehydroxylation of Brønsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 56(3), 267-278. doi:10.1016/s1387-1811(02)00491-2Blackwell, C. S., & Patton, R. L. (1988). Solid-state NMR of silicoaluminophosphate molecular sieves and aluminophosphate materials. The Journal of Physical Chemistry, 92(13), 3965-3970. doi:10.1021/j100324a055Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., & Flanigen, E. M. (1984). Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. Journal of the American Chemical Society, 106(20), 6092-6093. doi:10.1021/ja00332a063Vomscheid, R., Briend, M., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1994). The Role of the Template in Directing the Si Distribution in SAPO Zeolites. The Journal of Physical Chemistry, 98(38), 9614-9618. doi:10.1021/j100089a041Martins, G. A. V., Berlier, G., Coluccia, S., Pastore, H. O., Superti, G. B., Gatti, G., & Marchese, L. (2007). Revisiting the Nature of the Acidity in Chabazite-Related Silicoaluminophosphates:  Combined FTIR and29Si MAS NMR Study. The Journal of Physical Chemistry C, 111(1), 330-339. doi:10.1021/jp063921qWei, Y., Zhang, D., Xu, L., Chang, F., He, Y., Meng, S., … Liu, Z. (2008). Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins. Catalysis Today, 131(1-4), 262-269. doi:10.1016/j.cattod.2007.10.055Briend, M., Vomscheid, R., Peltre, M. J., Man, P. P., & Barthomeuf, D. (1995). Influence of the Choice of the Template on the Short- and Long-Term Stability of SAPO-34 Zeolite. The Journal of Physical Chemistry, 99(20), 8270-8276. doi:10.1021/j100020a060Suzuki, K., Nishio, T., Katada, N., Sastre, G., & Niwa, M. (2011). Ammonia IRMS-TPD measurements on Brønsted acidity of proton-formed SAPO-34. Phys. Chem. Chem. Phys., 13(8), 3311-3318. doi:10.1039/c0cp00961jKatada, N., Nouno, K., Lee, J. K., Shin, J., Hong, S. B., & Niwa, M. (2011). Acidic Properties of Cage-Based, Small-Pore Zeolites with Different Framework Topologies and Their Silicoaluminophosphate Analogues. The Journal of Physical Chemistry C, 115(45), 22505-22513. doi:10.1021/jp207894nSastre, G., Lewis, D. W., & Catlow, C. R. A. (1997). Modeling of Silicon Substitution in SAPO-5 and SAPO-34 Molecular Sieves. The Journal of Physical Chemistry B, 101(27), 5249-5262. doi:10.1021/jp963736kBarthomeuf, D. (1994). Topological model for the compared acidity of SAPOs and SiAl zeolites. Zeolites, 14(6), 394-401. doi:10.1016/0144-2449(94)90164-3Buchholz, A., Wang, W., Xu, M., Arnold, A., & Hunger, M. (2004). Sequential Steps of Ammoniation of the Microporous Silicoaluminophosphates H-SAPO-34 and H-SAPO-37 Investigated by In Situ CF MAS NMR Spectroscopy. The Journal of Physical Chemistry B, 108(10), 3107-3113. doi:10.1021/jp030249dWatanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S. A., & Noda, S. (1993). Multinuclear NMR Studies on the Thermal Stability of SAPO-34. Journal of Catalysis, 143(2), 430-436. doi:10.1006/jcat.1993.1287BUSCA, G. (1991). FT-113 study of the surface properties of the spinels NiAl2O4 and CoAl2O4 in relation to those of transitional aluminas. Journal of Catalysis, 131(1), 167-177. doi:10.1016/0021-9517(91)90333-yBusca, G., Lorenzelli, V., Ramis, G., & Willey, R. J. (1993). Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir, 9(6), 1492-1499. doi:10.1021/la00030a012Eilertsen, E. A., Arstad, B., Svelle, S., & Lillerud, K. P. (2012). Single parameter synthesis of high silica CHA zeolites from fluoride media. Microporous and Mesoporous Materials, 153, 94-99. doi:10.1016/j.micromeso.2011.12.026Bordiga, S., Regli, L., Cocina, D., Lamberti, C., Bjørgen, M., & Lillerud, K. P. (2005). Assessing the Acidity of High Silica Chabazite H−SSZ-13 by FTIR Using CO as Molecular Probe:  Comparison with H−SAPO-34. The Journal of Physical Chemistry B, 109(7), 2779-2784. doi:10.1021/jp045498wBleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0Janssens, T. V. W. (2009). A new approach to the modeling of deactivation in the conversion of methanol on zeolite catalysts. Journal of Catalysis, 264(2), 130-137. doi:10.1016/j.jcat.2009.03.004Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). Influence of Coke Deposition on Selectivity in Zeolite Catalysis. Industrial & Engineering Chemistry Research, 36(9), 3473-3479. doi:10.1021/ie9700223Sedran, U., Mahay, A., & De Lasa, H. I. (1990). Modelling methanol conversion to hydrocarbons: revision and testing of a simple kinetic model. Chemical Engineering Science, 45(5), 1161-1165. doi:10.1016/0009-2509(90)87109-6Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1997). The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Studies in Surface Science and Catalysis, 159-166. doi:10.1016/s0167-2991(97)80151-6Chen, D., Rebo, H. P., Moljord, K., & Holmen, A. (1999). Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions. Industrial & Engineering Chemistry Research, 38(11), 4241-4249. doi:10.1021/ie9807046Svelle, S., Sommer, L., Barbera, K., Vennestrøm, P. N. R., Olsbye, U., Lillerud, K. P., … Beato, P. (2011). How defects and crystal morphology control the effects of desilication. Catalysis Today, 168(1), 38-47. doi:10.1016/j.cattod.2010.12.013Sazama, P., Wichterlova, B., Dedecek, J., Tvaruzkova, Z., Musilova, Z., Palumbo, L., … Gonsiorova, O. (2011). FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, 143(1), 87-96. doi:10.1016/j.micromeso.2011.02.013Chen, D., Grønvold, A., Moljord, K., & Holmen, A. (2007). Methanol Conversion to Light Olefins over SAPO-34:  Reaction Network and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 46(12), 4116-4123. doi:10.1021/ie0610748Dahl, I. M., Mostad, H., Akporiaye, D., & Wendelbo, R. (1999). Structural and chemical influences on the MTO reaction: a comparison of chabazite and SAPO-34 as MTO catalysts. Microporous and Mesoporous Materials, 29(1-2), 185-190. doi:10.1016/s1387-1811(98)00330-8Hereijgers, B. P. C., Bleken, F., Nilsen, M. H., Svelle, S., Lillerud, K.-P., Bjørgen, M., … Olsbye, U. (2009). Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 264(1), 77-87. doi:10.1016/j.jcat.2009.03.009Song, W., Fu, H., & Haw, J. F. (2001). Supramolecular Origins of Product Selectivity for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 123(20), 4749-4754. doi:10.1021/ja0041167Arstad, B., Nicholas, J. B., & Haw, J. F. (2004). Theoretical Study of the Methylbenzene Side-Chain Hydrocarbon Pool Mechanism in Methanol to Olefin Catalysis. Journal of the American Chemical Society, 126(9), 2991-3001. doi:10.1021/ja035923jZhou, H., Wang, Y., Wei, F., Wang, D., & Wang, Z. (2008). Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A: General, 348(1), 135-141. doi:10.1016/j.apcata.2008.06.033Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046Wang, C.-M., Wang, Y.-D., & Xie, Z.-K. (2013). Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles: Are olefins themselves the dominating hydrocarbon pool species? Journal of Catalysis, 301, 8-19. doi:10.1016/j.jcat.2013.01.024Wang, C.-M., Wang, Y.-D., Xie, Z.-K., & Liu, Z.-P. (2009). Methanol to Olefin Conversion on HSAPO-34 Zeolite from Periodic Density Functional Theory Calculations: A Complete Cycle of Side Chain Hydrocarbon Pool Mechanism. The Journal of Physical Chemistry C, 113(11), 4584-4591. doi:10.1021/jp810350xHemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment. ChemPhysChem, 14(8), 1526-1545. doi:10.1002/cphc.201201023Westgård Erichsen, M., Svelle, S., & Olsbye, U. (2013). The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catalysis Today, 215, 216-223. doi:10.1016/j.cattod.2013.03.017Kim, S. J., Jang, H.-G., Lee, J. K., Min, H.-K., Hong, S. B., & Seo, G. (2011). Direct observation of hexamethylbenzenium radical cations generated during zeolite methanol-to-olefin catalysis: an ESR study. Chemical Communications, 47(33), 9498. doi:10.1039/c1cc13153bAlberty, R. A., & Gehrig, C. A. (1985). Standard Chemical Thermodynamic Properties of Alkene Isomer Groups. Journal of Physical and Chemical Reference Data, 14(3), 803-820. doi:10.1063/1.55573

    A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation

    Full text link
    [EN] Mayenite (Ca12Al14O33) was synthesized by a novel route based on the use of polymethyl methacrylate (PMMA) as a soft templating agent. The material was tested for the total oxidation of trichloroethylene in the gas phase and the catalytic performance was analysed when using different initial amounts of PMMA in the catalyst synthesis. The results were compared with those obtained with a mayenite synthetized by a classical hydrothermal method. The highest activity in terms of TCE conversion was achieved in the presence of mayenite prepared using 10% w/w of PMMA; its activity was also higher than that of the hydrothermal mayenite. The surface area and the number of superoxide anions (O-2(-)) seem to be the main properties determining the catalytic activity of the material.This research was funded by University of Salerno, grant number ORSA167988 and ORSA174250.Intiso, A.; Martínez-Triguero, J.; Cucciniello, R.; Proto, A.; Palomares Gimeno, AE.; Rossi, F. (2019). A Novel Synthetic Route to Prepare High Surface Area Mayenite Catalyst for TCE Oxidation. Catalysts. 9(1):1-8. https://doi.org/10.3390/catal9010027S1891Yang, S., Kondo, J. N., Hayashi, K., Hirano, M., Domen, K., & Hosono, H. (2004). Formation and Desorption of Oxygen Species in Nanoporous Crystal 12CaO·7Al2O3. Chemistry of Materials, 16(1), 104-110. doi:10.1021/cm034755rCucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A., & Rossi, F. (2017). Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental, 204, 167-172. doi:10.1016/j.apcatb.2016.11.03

    Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins

    Full text link
    [EN] Nanosized SSZ-13 has been obtained from a one-pot synthesis procedure with the addition of CTAB to the synthesis precursor solution. Nano-SSZ-13 zeolite showed high intracrystalline mesoporosity and compared to standard SSZ-13 presented a much longer lifetime and higher conversion capacity for the reaction of methanol to olefins. The improved properties were attributed to a more efficient utilization of micropores by easier diffusion of reactants and products and slower deactivation by coke. A higher C2/C3 ratio was found for nano-SSZ-13, pointing to a lower deactivation of the aromatics cycle of the hydrocarbon pool.Financial support by the Spanish Government-MINECO through “Severo Ochoa” (SEV 2012-0267), CTQ2015-67592-P, CTQ2015-70126-R, CTQ2015-68951-C3-1-R, MAT2015-71842-P, by the European Union ERC-AdG-2014-671093-SynCatMatch and by the Generalitat Valenciana PROMETEOII/2013/011 is acknowledged. Z. Li acknowledges China Scholarship Council (CSC) for a fellowship. J. Yu thanks the Major International Joint Research Project of China for financial support (Grant No. 21320102001).Li, Z.; Navarro Villalba, MT.; Martínez Triguero, LJ.; Yu, J.; Corma Canós, A. (2016). Synthesis of nano-SSZ-13 and its application in the reaction of methanol to olefins. Catalysis Science and Technology. 6(15):5856-5863. https://doi.org/10.1039/C6CY00433DS5856586361

    Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents

    Full text link
    [EN] A rationalized combination of alkali cations and bulky dicationic organic structure directing agents (OSDAs) has allowed the synthesis of the Al-rich MTW zeolites with Si/Al ratios of similar to 12 and large pore accessibility. Al-27 MAS NMR spectroscopy indicates that most of the aluminum atoms are in tetrahedral coordination in framework positions, and in situ infrared pyridine adsorption/desorption spectroscopy reveals strong Bronsted acidity after cationic exchange for the Al-rich MTW. In addition, another MTW material with a Si/Al ratio of 30 has been synthesized under alkali-free conditions using a bulky dicationic molecule such as OSDA, the lowest Si/Al ratio being achieved for a MTW zeolite synthesized in the absence of alkali-cations in the synthesis media. The catalytic activity of these MTW materials has been tested for the n-decane cracking reaction, achieving higher catalytic activities and olefin yields than other related large pore zeolites.Financial support from the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat and, MAT2012-37160 is acknowledged.Paris-Carrizo, CG.; Martín-García, N.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents. New Journal of Chemistry. 40(5):4140-4145. https://doi.org/10.1039/C5NJ01203AS41404145405LaPierre, R. B., Rohrman, A. C., Schlenker, J. L., Wood, J. D., Rubin, M. K., & Rohrbaugh, W. J. (1985). The framework topology of ZSM-12: A high-silica zeolite. Zeolites, 5(6), 346-348. doi:10.1016/0144-2449(85)90121-6Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-dFyfe, C. A., Gies, H., Kokotailo, G. T., Marler, B., & Cox, D. E. (1990). Crystal structure of silica-ZSM-12 by the combined use of hgh-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction. The Journal of Physical Chemistry, 94(9), 3718-3721. doi:10.1021/j100372a066Reddy, K. M., Moudrakovski, I., & Sayari, A. (1994). VS-12: a novel large-pore vanadium silicate with ZSM-12 structure. Journal of the Chemical Society, Chemical Communications, (12), 1491. doi:10.1039/c39940001491Millini, R., Frigerio, F., Bellussi, G., Pazzuconi, G., Perego, C., Pollesel, P., & Romano, U. (2003). A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene. Journal of Catalysis, 217(2), 298-309. doi:10.1016/s0021-9517(03)00071-xPerego, C., Amarilli, S., Millini, R., Bellussi, G., Girotti, G., & Terzoni, G. (1996). Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis. Microporous Materials, 6(5-6), 395-404. doi:10.1016/0927-6513(96)00037-5Jones, C. (1999). m-Xylene reactions over zeolites with unidimensional pore systems. Applied Catalysis A: General, 181(2), 289-303. doi:10.1016/s0926-860x(98)00401-3Zhang, W., & Smirniotis, P. G. (1999). Catalysis Letters, 60(4), 223-228. doi:10.1023/a:1019079612655Katovic, A., Chiche, B. H., Di Renzo, F., Giordano, G., & Fajula, F. (2000). Influence of the aluminium content on the acidity and catalytic activity of MTW-type zeolites. 12th International Congress on Catalysis, Proceedings of the 12th ICC, 857-862. doi:10.1016/s0167-2991(00)81066-6Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014Coulomb, J. P., & Floquet, N. (2008). Determination of zeolite closed porosity in (1D) channel systems (AFI and MTW types). Studies in Surface Science and Catalysis, 913-916. doi:10.1016/s0167-2991(08)80037-7Gopal, S., Yoo, K., & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template. Microporous and Mesoporous Materials, 49(1-3), 149-156. doi:10.1016/s1387-1811(01)00412-7Araujo, A. S., Silva, A. O. S., Souza, M. J. B., Coutinho, A. C. S. L. S., Aquino, J. M. F. B., Moura, J. A., & Pedrosa, A. M. G. (2005). Crystallization of ZSM-12 Zeolite with Different Si/Al Ratio. Adsorption, 11(2), 159-165. doi:10.1007/s10450-005-4909-8Li, J., Lou, L.-L., Xu, C., & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol. Catalysis Communications, 50, 97-100. doi:10.1016/j.catcom.2014.03.011Jackowski, A., Zones, S. I., Hwang, S.-J., & Burton, A. W. (2009). Diquaternary Ammonium Compounds in Zeolite Synthesis: Cyclic and PolycyclicN-Heterocycles Connected by Methylene Chains. Journal of the American Chemical Society, 131(3), 1092-1100. doi:10.1021/ja806978fCorma, A., Martı́nez-Triguero, J., Valencia, S., Benazzi, E., & Lacombe, S. (2002). IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite. Journal of Catalysis, 206(1), 125-133. doi:10.1006/jcat.2001.3469Marler, B., Dehnbostel, N., Eulert, H.-H., Gies, H., & Liebau, F. (1986). Studies on clathrasils VIII. Nonasils-[4158], 88SiO2 � 8M8 � 8M9 � 4M20: Synthesis, thermal properties, and crystal structure. Journal of Inclusion Phenomena, 4(4), 339-349. doi:10.1007/bf00656161Pinar, A. B., García, R., Gómez-Hortigüela, L., & Pérez-Pariente, J. (2010). Synthesis of Open Zeolite Structures from Mixtures of Tetramethylammonium and Benzylmethylalkylammonium Cations: A Step Towards Driving Aluminium Location in the Framework. Topics in Catalysis, 53(19-20), 1297-1303. doi:10.1007/s11244-010-9587-4De Baerdemaeker, T., Müller, U., & Yilmaz, B. (2011). Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent. Microporous and Mesoporous Materials, 143(2-3), 477-481. doi:10.1016/j.micromeso.2011.03.018Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.114

    Hierarchical zeolites TNU-9 and IM-5 as the catalysts for cracking processes

    Get PDF
    [EN] The 10-ring zeolites TNU-9 and IM-5 were obtained by a desilication and evaluated in series of acid-catalysed cracking reactions. n-Decane and 1,3,5-tri-iso-propylbenzene cracking were performed as model reactions, while vacuum gas oil, polypropylene and polyethylene were cracked into add-value lower molecular weight chemicals. The catalytic performance improvement of hierarchical zeolites was rationalized by deep acid sites characterization in situ FT-IR studies of pyridine, carbon monoxide and 2,6-di-tert-butylpyridine sorption. Further, operando FT-IR-GC studies supported by 2D COS (two-dimensional correlation) analysis provided insight into cracking and coking of catalysts during polypropylene and polyethylene decomposition. It was found that NaOH-derived catalysts ensure the most upsurged acidity, in terms of number and accessibility of the sites, and then with better performance. In VGO cracking the connected mesopores added post-synthesis increased yields to propylene and middle distillates and lowered coke production. A bigger share of iso-olefins was observed both in VGO and polyolefins cracking products.KGM acknowledges the Grant No 2021/43/B/ST4/00307 form National Science Center, Poland. KAT acknowledges the Grant No 2020/37/B/ST4/01215 form National Science Center, Poland. For the purpose of Open Access, the author has applied a CC-BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission. JMT acknowledges the Grant MFA/2022/016 from Advanced Materials program supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17. I1) and by Generalitat Valenciana. The study was carried out using research infrastructure purchased with the funds of the European Union in the framework of the Smart Growth Operational Program, Measure 4.2; Grant No. POIR.04.02.00-00-D001/20-00, "ATOMIN 2.0-ATOMic scale science for the INnovative economy". The open-access publication of this article has been supported by a grant from the Faculty of Chemistry under the Strategic Programme Excellence Initiative at Jagiellonian University.Tarach, KA.; Martínez-Triguero, J.; Valencia Valencia, S.; Wojciechowska, K.; Rey Garcia, F.; Góra-Marek, K. (2023). Hierarchical zeolites TNU-9 and IM-5 as the catalysts for cracking processes. Applied Catalysis B Environmental. 338. https://doi.org/10.1016/j.apcatb.2023.12306633
    corecore