467 research outputs found

    Solid like friction of a polymer chain

    Full text link
    We propose a simple friction model for isolated polymer chains on a solid substrate. The chains are pulled at constant velocity by one end, the other end can be trapped on the solid substrate on localised sites. We focus on the energy dissipation due to the traps. This simple model leads to non trivial friction laws, depending on the velocity and the distance between traps. Some refinements of the model such as the effect of thermal fluctuation are also reported.Comment: 16 pages, 4 eps figures, accepted for publuication in Eur. Phys. J. E New version of 20/07/2000 minor modifications to figure

    Adsorption of polyampholytes on charged surfaces

    Full text link
    We have studied the adsorption of neutral polyampholytes on model charged surfaces that have been characterized by contact angle and streaming current measurements. The loop size distributions of adsorbed polymer chains have been obtained using atomic force microscopy (AFM) and compared to recent theoretical predictions. We find a qualitative agreement with theory; the higher the surface charge, the smaller the number of monomers in the adsorbed layer, in agreement with theory. We propose an original scenario for the adsorption of polyampholytes on surfaces covered with both neutral long-chain and charged short-chain thiols.Comment: 11 pages, 17 figures, accepted for publication in EPJ

    Casimir stresses in active nematic films

    No full text
    We calculate the Casimir stresses in a thin layer of active fluid with nematic order. By using a stochastic hydrodynamic approach for an active fluid layer of finite thickness L, we generalize the Casimir stress for nematic liquid crystals in thermal equilibrium to active systems. We show that the active Casimir stress differs significantly from its equilibrium counterpart. For contractile activity, the active Casimir stress, although attractive like its equilibrium counterpart, diverges logarithmically as L approaches a threshold of the spontaneous flow instability from below. In contrast, for small extensile activity, it is repulsive, has no divergence at any L and has a scaling with L different from its equilibrium counterpart

    Compression of finite size polymer brushes

    Full text link
    We consider edge effects in grafted polymer layers under compression. For a semi-infinite brush, the penetration depth of edge effects ξh0(h0/h)1/2\xi\propto h_0(h_0/h)^{1/2} is larger than the natural height h0h_0 and the actual height hh. For a brush of finite lateral size SS (width of a stripe or radius of a disk), the lateral extension uSu_S of the border chains follows the scaling law uS=ξϕ(S/ξ)u_S = \xi \phi (S/\xi). The scaling function ϕ(x)\phi (x) is estimated within the framework of a local Flory theory for stripe-shaped grafting surfaces. For small xx, ϕ(x)\phi (x) decays as a power law in agreement with simple arguments. The effective line tension and the variation with compression height of the force applied on the brush are also calculated.Comment: 6 pages, 7 figures, submitted to PCC

    Stretching necklaces

    Full text link
    Polyelectrolytes in poor solvents show a necklace structure where collapsed polymer pearls are linked to stretched strings. In the present paper the elasticity of such chains is studied in detail. Different deformation regimes are addressed. The first is the continuous regime, where many pearls are present. A continuous force extension relation ship is calculated. The main contribution comes from the tension balance and the electrostatic repulsion of consecutive pearls. The main correction term stems from the finite size of the pearls, which monitors their surface energy. For a finite amount of pearls discontinuous stretching is predicted. Finally counterion effects are discussed qualitatively.Comment: to appear in European Phys. Journal E (soft matter

    Influence of sequence correlations on the adsorption of random copolymers onto homogeneous planar surfaces

    Full text link
    Using a reference system approach, we develop an analytical theory for the adsorption of random heteropolymers with exponentially decaying and/or oscillating sequence correlations on planar homogeneous surfaces. We obtain a simple equation for the adsorption-desorption transition line. This result as well as the validity of the reference system approach is tested by a comparison with numerical lattice calculations

    Polymer adsorption onto random planar surfaces: Interplay of polymer and surface correlation

    Full text link
    We study the adsorption of homogeneous or heterogeneous polymers onto heterogeneous planar surfaces with exponentially decaying site-site correlations, using a variational reference system approach. As a main result, we derive simple equations for the adsorption-desorption transition line. We show that the adsorption threshold is the same for systems with quenched and annealed disorder. The results are discussed with respect to their implications for the physics of molecular recognition

    Collective dynamics of molecular motors pulling on fluid membranes

    Get PDF
    The collective dynamics of NN weakly coupled processive molecular motors are considered theoretically. We show, using a discrete lattice model, that the velocity-force curves strongly depend on the effective dynamic interactions between motors and differ significantly from a simple mean field prediction. They become essentially independent of NN if it is large enough. For strongly biased motors such as kinesin this occurs if N5N\gtrsim 5. The study of a two-state model shows that the existence of internal states can induce effective interactions.Comment: 5 pages, 5 figure
    corecore