9 research outputs found

    Lead Exposures in U.S. Children, 2008: Implications for Prevention

    Get PDF

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    The cholinergic blockade of both thermally and non-thermally induced human eccrine sweating

    No full text
    Thermally induced eccrine sweating is cholinergically mediated, but other neurotransmitters have been postulated for psychological (emotional) sweating. However, we hypothesized that such sweating is not noradrenergically driven in passively heated, resting humans. To test this, nine supine subjects were exposed to non-thermal stimuli (palmar pain, mental arithmetic and static exercise) known to evoke sweating. Trials consisted of the following four sequential phases: thermoneutral rest; passive heating to elevate (by ∼1.0◦C) and clamp mean body temperature and steady-state sweating (perfusion garment and footbath); an atropine sulphate infusion (0.04mg kg−1)with thermal clamping sustained;andfollowingclamp removal. Sudomotor responses from glabrous (hairless) and non-glabrous skin surfaces were measured simultaneously (precursor and discharged sweating).When thermoneutral, these non-thermal stimuli elicited significant sweating only from the palm (P 0.05). However, when the thermal clamp was removed, core and skin temperatures became further elevated and sweating was restored (P \u3c0.05), indicating that the blockade had been overcome, presumably through elevated receptor competition. These observations establish the dependence of both thermal and non-thermal eccrine sweating from glabrous and non-glabrous surfaces on acetylcholine release, and challenge theories concerning the psychological modulation of sweating. Furthermore, no evidence existed for the significant participation of non-cholinergic neurotransmitters during any of these stimulations

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore