10 research outputs found

    Kidney Drug Transporters in Pharmacotherapy

    No full text
    The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug–drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review

    Kidney Drug Transporters in Pharmacotherapy

    No full text
    The kidney functions not only as a metabolite elimination organ but also plays an important role in pharmacotherapy. The kidney tubule epithelia cells express membrane carriers and transporters, which play an important role in drug elimination, and can determine drug nephrotoxicity and drug–drug interactions, as well as constituting direct drug targets. The above aspects of kidney transport proteins are discussed in the review

    A Mixture Method for Robust Detection HCV Early Diagnosis Biomarker with ML Approach and Molecular Docking

    No full text
    Given the substantial correlation between early diagnosis and prolonged patient survival in HCV patients, it is vital to identify a reliable and accessible biomarker. The purpose of this research was to identify accurate miRNA biomarkers to aid in the early diagnosis of HCV and to identify key target genes for anti-hepatic fibrosis therapeutics. The expression of 188 miRNAs in 42 HCV liver patients with different functional states and 23 normal livers were determined using RT-qPCR. After screening out differentially expressed miRNA (DEmiRNAs), the target genes were predicted. To validate target genes, an HCV microarray dataset was subjected to five machine learning algorithms (Random Forest, Adaboost, Bagging, Boosting, XGBoost) and then, based on the best model, importance features were selected. After identification of hub target genes, to evaluate the potency of compounds that might hit key hub target genes, molecular docking was performed. According to our data, eight DEmiRNAs are associated with early stage and eight DEmiRNAs are linked to a deterioration in liver function and an increase in HCV severity. In the validation phase of target genes, model evaluation revealed that XGBoost (AUC = 0.978) outperformed the other machine learning algorithms. The results of the maximal clique centrality algorithm determined that CDK1 is a hub target gene, which can be hinted at by hsa-miR-335, hsa-miR-140, hsa-miR-152, and hsa-miR-195. Because viral proteins boost CDK1 activation for cell mitosis, pharmacological inhibition may have anti-HCV therapeutic promise. The strong affinity binding of paeoniflorin (−6.32 kcal/mol) and diosmin (−6.01 kcal/mol) with CDK1 was demonstrated by molecular docking, which may result in attractive anti-HCV compounds. The findings of this study may provide significant evidence, in the context of the miRNA biomarkers, for early-stage HCV diagnosis. In addition, recognized hub target genes and small molecules with high binding affinity may constitute a novel set of therapeutic targets for HCV

    Double-Emulsion Copolyester Microcapsules for Sustained Intraperitoneal Release of Carboplatin

    No full text
    Despite on-going medical advances, ovarian cancer survival rates have stagnated. In order to improve IP delivery of platinum-based antineoplastics, we aimed to develop a sustained drug delivery system for carboplatin (CPt). Toward this aim, we pursued a double emulsion process for obtaining CPt-loaded microcapsules composed of poly(ethylene terephthalate-ethylene dilinoleate) (PET-DLA) copolymer. We were able to obtain PET-DLA microspheres in the targeted size range of 10–25 µm (median: 18.5 µm), to reduce intraperitoneal clearance by phagocytosis and lymphoid transit. Empty microspheres showed the lack of toxicity in vitro. The double emulsion process yielded 2.5% w/w CPt loading and obtained microcapsules exhibited sustained (>20 day) zero-order release. The encapsulated CPt was confirmed to be bioavailable, as the microcapsules demonstrated efficacy against human ovarian adenocarcinoma (SK-OV-3) cells in vitro. Following intraperitoneal injection in mice, we did not observe adhesions, only mild, clinically-insignificant, local inflammatory response. Tissue platinum levels, monitored over 14 days using atomic absorption spectroscopy, revealed low burst and reduced systemic uptake (plasma, kidney), as compared to neat carboplatin injection. Overall, the results demonstrate the potential of the developed microencapsulation system for long-term intraperitoneal sustained release of carboplatin for the treatment of ovarian cancer

    Double-Emulsion Copolyester Microcapsules for Sustained Intraperitoneal Release of Carboplatin

    No full text
    Despite on-going medical advances, ovarian cancer survival rates have stagnated. In order to improve IP delivery of platinum-based antineoplastics, we aimed to develop a sustained drug delivery system for carboplatin (CPt). Toward this aim, we pursued a double emulsion process for obtaining CPt-loaded microcapsules composed of poly(ethylene terephthalate-ethylene dilinoleate) (PET‑DLA) copolymer. We were able to obtain PET-DLA microspheres in the targeted size range of 10–25 µm (median: 18.5 µm), to reduce intraperitoneal clearance by phagocytosis and lymphoid transit. Empty microspheres showed the lack of toxicity in vitro. The double emulsion process yielded 2.5% w/w CPt loading and obtained microcapsules exhibited sustained (>20 day) zero-order release. The encapsulated CPt was confirmed to be bioavailable, as the microcapsules demonstrated efficacy against human ovarian adenocarcinoma (SK-OV-3) cells in vitro. Following intraperitoneal injection in mice, we did not observe adhesions, only mild clinically-insignificant, local inflammatory response. Tissue platinum levels, monitored over 14 days using atomic absorption spectroscopy, revealed low burst and reduced systemic uptake (plasma, kidney), as compared to neat carboplatin injection. Overall, the results demonstrate the potential of the developed microencapsulation system for long-term intraperitoneal sustained release of carboplatin forthe treatment of ovarian cancer.</div

    Monocarboxylate Transporter 1 (MCT1) in Liver Pathology

    No full text
    Membrane monocarboxylate transporter 1 (SLC16A1/MCT1) plays an important role in hepatocyte homeostasis, as well as drug handling. However, there is no available information about the impact of liver pathology on the transporter levels and function. The study was aimed to quantify SLC16A1 mRNA (qRT-PCR) and MCT1 protein abundance (liquid chromatography–tandem mass spectrometry (LC¬¬–MS/MS)) in the livers of patients diagnosed, according to the standard clinical criteria, with hepatitis C, primary biliary cirrhosis, primary sclerosing hepatitis, alcoholic liver disease (ALD), and autoimmune hepatitis. The stage of liver dysfunction was classified according to Child–Pugh score. Downregulation of SLC16A1/MCT1 levels was observed in all liver pathology states, significantly for ALD. The progression of liver dysfunction, from Child–Pugh class A to C, involved the gradual decline in SLC16A1 mRNA and MCT1 protein abundance, reaching a clinically significant decrease in class C livers. Reduced levels of MCT1 were associated with significant intracellular lactate accumulation. The MCT1 transcript and protein did not demonstrate significant correlations regardless of the liver pathology analyzed, as well as the disease stage, suggesting posttranscriptional regulation, and several microRNAs were found as potential regulators of MCT1 abundance. MCT1 membrane immunolocalization without cytoplasmic retention was observed in all studied liver pathologies. Overall, the study demonstrates that SLC16A1/MCT1 is involved in liver pathology, especially in AL

    Effects of a Common Eight Base Pairs Duplication at the Exon 7-Intron 7 Junction on Splicing, Expression, and Function of OCT1

    No full text
    Organic cation transporter 1 (OCT1, SLC22A1) is localized in the sinusoidal membrane of human hepatocytes and mediates hepatic uptake of weakly basic or cationic drugs and endogenous compounds. Common amino acid substitutions in OCT1 were associated with altered pharmacokinetics and efficacy of drugs like sumatriptan and fenoterol. Recently, the common splice variant rs35854239 has also been suggested to affect OCT1 function. rs35854239 represents an 8 bp duplication of the donor splice site at the exon 7-intron 7 junction. Here we quantified the extent to which this duplication affects OCT1 splicing and, as a consequence, the expression and the function of OCT1. We used pyrosequencing and deep RNA-sequencing to quantify the effect of rs35854239 on splicing after minigene expression of this variant in HepG2 and Huh7 cells and directly in human liver samples. Further, we analyzed the effects of rs35854239 on OCT1 mRNA expression in total, localization and activity of the resulting OCT1 protein, and on the pharmacokinetics of sumatriptan and fenoterol. The 8 bp duplication caused alternative splicing in 38% (deep RNA-sequencing) to 52% (pyrosequencing) of the minigene transcripts when analyzed in HepG2 and Huh7 cells. The alternatively spliced transcript encodes for a truncated protein that after transient transfection in HEK293 cells was not localized in the plasma membrane and was not able to transport the OCT1 model substrate ASP+. In human liver, however, the alternatively spliced OCT1 transcript was detectable only at very low levels (0.3% in heterozygous and 0.6% in homozygous carriers of the 8 bp duplication, deep RNA-sequencing). The 8 bp duplication was associated with a significant reduction of OCT1 expression in the human liver, but explained only 9% of the general variability in OCT1 expression and was not associated with significant changes in the pharmacokinetics of sumatriptan and fenoterol. Therefore, the rs35854239 variant only partially changes splicing, causing moderate changes in OCT1 expression and may be of only limited therapeutic relevance

    Values and preferences influencing willingness to change red and processed meat consumption in response to evidence-based information : a mixed methods study

    Get PDF
    The aim of the study is (1) to assess the extent to which omnivores are willing to stop or reduce their consumption of red and processed meat in response to evidence-based information regarding the possible reduction of cancer mortality and incidence achieved by dietary modification; (2) to identify socio-demographic categories associated with higher willingness to change meat consumption and (3) to understand the motives facilitating and hindering such a change. During an initial computer-assisted web interview, respondents were presented with scenarios containing the estimates of the absolute risk reduction in overall cancer incidence and mortality tailored to their declared level of red and processed meat consumption. Respondents were asked whether they would stop or reduce their average meat consumption based on the information provided. Their dietary choices were assessed at 6-month follow-up. Additionally, we conducted semi-structured interviews to better understand the rationale for dietary practices and the perception of health information. The study was conducted among students and staff of three universities in Krakow, Poland. Most of the 513 respondents were unwilling to change their consumption habits. We found gender to be a significant predictor of the willingness. Finally, we identified four themes reflecting key motives that determined meat consumption preferences: the importance of taste and texture, health consciousness, the habitual nature of cooking and persistence of omnivorous habits. When faced with health information about the uncertain reduction in the risk of cancer mortality and incidence, the vast majority of study participants were unwilling to introduce changes in their consumption habits
    corecore