60 research outputs found

    When transcription meets recombination: a lesson from the human RECQ protein complexes

    Get PDF
    Since the cloning of the first human RECQ gene, RECQ1, more than 15 years ago, RECQ helicases have been a major focus in cancer research. Recent studies of human RECQ protein complexes are providing insight into their roles in various DNA metabolic pathways that protect the integrity of our genome

    ASB2 is an Elongin BC-interacting protein that can assemble with Cullin 5 and Rbx1 to reconstitute an E3 ubiquitin ligase complex.

    Get PDF
    International audience; The ankyrin repeat-containing protein with a suppressor of cytokine signaling box-2 (ASB2) gene was identified as a retinoic acid-response gene and a target of the promyelocytic leukemia-retinoic acid receptor-alpha oncogenic protein characteristic of acute promyelocytic leukemia. Expression of ASB2 in myeloid leukemia cells inhibits growth and promotes commitment, recapitulating an early step known to be critical for differentiation. Here we show that ASB2, by interacting with the Elongin BC complex, can assemble with Cullin5.Rbx1 to form an E3 ubiquitin ligase complex that stimulates polyubiquitination by the E2 ubiquitin-conjugating enzyme Ubc5. This is a first indication that a member of the ASB protein family, ASB2, is a subunit of an ECS (Elongin C-Cullin-SOCS box)-type E3 ubiquitin ligase complex. Altogether, our results strongly suggest that ASB2 targets specific proteins to destruction by the proteasome in leukemia cells that have been induced to differentiate

    <i>Schizosaccharomyces pombe</i> Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex

    Get PDF
    ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEClike complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation

    Human Mediator Subunit MED26 Functions as a Docking Site for Transcription Elongation Factors

    Get PDF
    SummaryPromoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription

    Mediator Subunit 12 Is Required for Neutrophil Development in Zebrafish

    Get PDF
    Hematopoiesis requires the spatiotemporal organization of regulatory factors to successfully orchestrate diverse lineage specificity from stem and progenitor cells. Med12 is a regulatory component of the large Mediator complex that enables contact between the general RNA polymerase II transcriptional machinery and enhancer bound regulatory factors. We have identified a new zebrafish med12 allele, syr, with a single missense mutation causing a valine to aspartic acid change at position 1046. Syr shows defects in hematopoiesis, which predominantly affect the myeloid lineage. Syr has identified a hematopoietic cell-specific requirement for Med12, suggesting a new role for this transcriptional regulator

    Thematic Minireview Series on Computational Systems Biology*

    No full text
    • …
    corecore