38 research outputs found

    Discovery of an X-ray cavity near the radio lobes of Cygnus A indicating previous AGN activity

    Get PDF
    Cygnus A harbours the nearest powerful radio jet of an Fanaroff-Riley (FR) class II radio galaxy in a galaxy cluster where the interaction of the jet with the intracluster medium (ICM) can be studied in detail. We use a large set of Chandra archival data, VLA and new LOFAR observations to shed new light on the interaction of the jets with the ICM. We identify an X-ray cavity in the distribution of the X-ray emitting plasma in the region south of the Cyg A nucleus which has lower pressure than the surrounding medium. The LOFAR and VLA radio observations show that the cavity is filled with synchrotron emitting plasma. The spectral age and the buoyancy time of the cavity indicates an age at least as large as the current Cyg A jets and not much larger than twice this time. We suggest that this cavity was created in a previous active phase of Cyg A when the energy output of the Active Galactic Nucleus (AGN) was about two orders of magnitude less than today.Comment: Letter submitted on 4 May 2012 to A&A, 4 pages, 4 figure

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Unheimliche Sterne

    No full text

    Das Schicksal der Sterne : Endzustände der Materie im Kosmos

    No full text

    Röntgenstrahlung aus dem Weltraum

    No full text

    Neutron Stars and Black Holes: New clues from Chandra and XMM-Newton

    No full text
    Neutron stars and black holes, the most compact astrophysical objects, have become observable in many different ways during the last few decades. We will first review the phenomenology and properties of neutron stars and black holes (stellar and supermassive) as derived from multiwavelength observatories. Recently much progress has been made by means of the new powerful X-ray observatories Chandra and XMM-Newton which provide a substantial increase in sensitivity as well as spectral and angular resolution compared with previous satellites like ROSAT and ASCA. We shall discuss in more detail two recent topics: (1) The attempts to use X-ray spectroscopy for measuring the radii of neutron stars which depend on the equation of state at supranuclear densities. Have quark stars been detected? (2) The diagnostics of the strong gravity regions around supermassive black holes using X-ray spectroscopy

    On the photosperic emission of neutron stars

    No full text
    corecore