1,472 research outputs found

    New Algorithms for Maximum Disjoint Paths Based on Tree-Likeness

    Get PDF
    We study the classical NP-hard problems of finding maximum-size subsets from given sets of k terminal pairs that can be routed via edge-disjoint paths (MaxEDP) or node-disjoint paths (MaxNDP) in a given graph. The approximability of MaxEDP/NDP is currently not well understood; the best known lower bound is Omega(log^{1/2 - varepsilon} n), assuming NP not subseteq ZPTIME(n^{poly log n}). This constitutes a significant gap to the best known approximation upper bound of O(n^1/2) due to Chekuri et al. (2006) and closing this gap is currently one of the big open problems in approximation algorithms. In their seminal paper, Raghavan and Thompson (Combinatorica, 1987) introduce the technique of randomized rounding for LPs; their technique gives an O(1)-approximation when edges (or nodes) may be used by O(log n/log log n) paths. In this paper, we strengthen the above fundamental results. We provide new bounds formulated in terms of the feedback vertex set number r of a graph, which measures its vertex deletion distance to a forest. In particular, we obtain the following. - For MaxEDP, we give an O(r^0.5 log^1.5 kr)-approximation algorithm. As r<=n, up to logarithmic factors, our result strengthens the best known ratio O(n^0.5) due to Chekuri et al. - Further, we show how to route Omega(opt) pairs with congestion O(log(kr)/log log(kr)), strengthening the bound obtained by the classic approach of Raghavan and Thompson. - For MaxNDP, we give an algorithm that gives the optimal answer in time (k+r)^O(r)n. This is a substantial improvement on the run time of 2^kr^O(r)n, which can be obtained via an algorithm by Scheffler. We complement these positive results by proving that MaxEDP is NP-hard even for r=1, and MaxNDP is W[1]-hard for parameter r. This shows that neither problem is fixed-parameter tractable in r unless FPT = W[1] and that our approximability results are relevant even for very small constant values of r

    The Qualification of Silicon Microstrip Detector Modules for the CMS Inner Tracking Detector

    Get PDF
    For the construction of the CMS inner tracking detector 15,232 silicon microstrip detectors had to be produced. This large number required a fast, easy to use and cost-efficient test setup for the quality assurance at different production steps in all laboratories participating in the production of the detector modules. This article describes typical faults occurring on modules as well as the test procedures used to identify and classify them provided by the APV Readout Controller (ARC) system. To establish the final test procedures the data of more than 500 tracker endcap modules had been analysed in detail. An optimal combination of measures was found that prove to be extremely efficient in detecting and properly identifying all relevant failure modes of a detector module. Finally the quality of all modules for the CMS silicon microstrip tracker is quoted

    K0s K0s Final State in Two-Photon Collisions and Implications for Glueballs

    Get PDF
    The K0s K0s final state in two-photon collisions is studied with the L3 detector at LEP. The mass spectrum is dominated by the formation of the f_2'(1525) tensor meson in the helicity-two state with a two-photon width times the branching ratio into K Kbar of 76 +- 6 +- 11 eV. A clear signal for the formation of the f_J(1710) is observed and it is found to be dominated by the spin-two helicity-two state. No resonance is observed in the mass region around 2.2 GeV and an upper limit of 1.4 eV at 95% C.L. is derived for the two-photon width times the branching ratio into K0s K0s for the glueball candidate xi(2230)

    Particle-flow reconstruction and global event description with the CMS detector

    Get PDF
    The CMS apparatus was identified, a few years before the start of the LHC operation at CERN, to feature properties well suited to particle-flow (PF) reconstruction: a highly-segmented tracker, a fine-grained electromagnetic calorimeter, a hermetic hadron calorimeter, a strong magnetic field, and an excellent muon spectrometer. A fully-fledged PF reconstruction algorithm tuned to the CMS detector was therefore developed and has been consistently used in physics analyses for the first time at a hadron collider. For each collision, the comprehensive list of final-state particles identified and reconstructed by the algorithm provides a global event description that leads to unprecedented CMS performance for jet and hadronic tau decay reconstruction, missing transverse momentum determination, and electron and muon identification. This approach also allows particles from pileup interactions to be identified and enables efficient pileup mitigation methods. The data collected by CMS at a centre-of-mass energy of 8 TeV show excellent agreement with the simulation and confirm the superior PF performance at least up to an average of 20 pileup interactions

    Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV

    Get PDF
    Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated tt‟\mathrm{t}\overline{\mathrm{t}} events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The heavy-flavour jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV)

    Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton–proton collisions at 13 TeV

    Get PDF
    info:eu-repo/semantics/publishe

    Evidence for the Higgs boson decay to a bottom quark–antiquark pair

    Get PDF
    info:eu-repo/semantics/publishe

    Measurement of the W-Pair Production Cross Section and W-Decay Branching Fractions in e+e−e^{+}e^{-} Interactions at s\sqrt{s}= 189 GeV

    Get PDF
    The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV188.6~\rm{Ge\kern -0.1em V} are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8~pb−1^{-1}. The total cross section for W-pair production, combining all final states, is measured to be σWW=16.24±0.37 (stat.)±0.22 (syst.)\sigma_{\rm{WW}}= 16.24 \pm 0.37~(stat.) \pm 0.22~(syst.)~pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(W→qq)=[68.20±0.68 (stat.)±0.33 (syst.)] % B(\rm{W} \rightarrow \rm{qq})= \left[ 68.20 \pm 0.68~(stat.) \pm 0.33~(syst.)\right]~\%. The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8pb^-1. The total cross section for W-pair production, combining all final states, is measured to be sigma_WW = 16.24 +/- 0.37(stat.) +/- 0.22(syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B(W ->qq) = [68.20 +/- 0.68 (stat.) +/- 0.33 (syst.) ] %. The results agree with the Standard Model predictions.The data collected by the L3 experiment at LEP at a centre-of-mass energy of 188.6 GeV are used to measure the W-pair production cross section and the W-boson decay branching fractions. These data correspond to an integrated luminosity of 176.8 pb −1 . The total cross section for W-pair production, combining all final states, is measured to be σ WW =16.24±0.37 (stat.)±0.22 (syst.) pb. Including our data collected at lower centre-of-mass energies, the hadronic branching fraction of the W-boson is determined to be B (W→qq)=[68.20±0.68 (stat.)±0.33 (syst.)]%. The results agree with the Standard Model predictions

    Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    Get PDF
    info:eu-repo/semantics/publishe
    • 

    corecore