41,790 research outputs found

    Selective Pod Abortion by \u3ci\u3eBaptista Leucantha\u3c/i\u3e (Fabaceae) as Affected by a Curculionid Seed Predator, \u3ci\u3eApion Rostrum\u3c/i\u3e (Coleoptera)

    Get PDF
    The effect of a seed predator, Apion rostrum (Coleoptera: Curculionidae), on selective pod abortion from Baptisia leucantha (Fabaceae) was investigated in a restored tallgrass prairie plot. Weevil densities in and undamaged seed contents of attached and detached pods were compared over four occasions during the summer of 1993. Detached pods had similar to lower counts of weevils/pod and fewer seeds/pod than attached pods. Weevil density in pods appears only important in promoting pod abortIon through affects on seed number/pod as pods having fewer seeds are selectively aborted

    Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Full text link
    In this proceedings we present a state-of-the-art method of calculating thermodynamic potential at finite temperature and finite chemical potential, using Hard Thermal Loop perturbation theory (HTLpt) up to next-to-next-leading-order (NNLO). The resulting thermodynamic potential enables us to evaluate different thermodynamic quantities including pressure and various quark number susceptibilities (QNS). Comparison between our analytic results for those thermodynamic quantities with the available lattice data shows a good agreement.Comment: 5 pages, 6 figures, conference proceedings of XXI DAE-BRNS HEP Symposium, IIT Guwahati, December 2014; to appear in 'Springer Proceedings in Physics Series

    Heavy oil production with energy effective steam-assisted gravity drainage

    Get PDF
    In reservoirs with extra heavy oil and bitumen, thermal methods are used to reduce the viscosity, in order to extract the oil. Steam-assisted gravity drainage (SAGD) is a thermal method where continuous steam injection is used. In this method, two horizontal wells are placed in parallel. The upper well injects steam and the lower well produces oil and condensed water. The continuous steam injection creates a chamber with uniform temperature. Heavy oil and bitumen reserves in Western Canada, which exceed 175 billion barrels, are becoming increasingly important petroleum sources due to the technical success of the SAGD processes. This study includes Computational fluid dynamics (CFD) modelling and simulations of a horizontal oil well with SAGD. The simulations are performed with inflow control devices (ICD) and autonomous inflow control valves (AICV) completion. In the SAGD processes, it is important that the residence time for steam in the reservoir is high enough to ensure that all the injected steam condenses in the reservoir to reduce the amount of steam injection and thereby making the SAGD process more energy effective. The simulations are carried out with ICD completion to delay the steam breakthrough and with AICV completion to prevent breakthrough of steam and water to the well. The numerical results showed that a most of the steam was produced together with the oil when ICD completion was used. AICV was able to close for steam and water, and the steam was thereby forced to condense in the reservoir, resulting in better utilization of the condensation energy

    Seeing, Wind and Outer Scale Effects on Image Quality at the Magellan Telescopes

    Full text link
    We present an analysis of the science image quality obtained on the twin 6.5 metre Magellan telescopes over a 1.5 year period, using images of ~10^5 stars. We find that the telescopes generally obtain significantly better image quality than the DIMM-measured seeing. This is qualitatively consistent with expectations for large telescopes, where the wavefront outer scale of the turbulence spectrum plays a significant role. However, the dominant effect is found to be wind speed with Magellan outperforming the DIMMs most markedly when the wind is strongest. Excluding data taken during strong wind conditions (>10 m/s), we find that the Magellan telescopes still significantly outperform the DIMM seeing, and we estimate the site to have L_0 ~ 25 m on average. We also report on the first detection of a negative bias in DIMM data. This is found to occur, as predicted, when the DIMM is affected by certain optical aberrations and the turbulence profile is dominated by the upper layers of the atmosphere.Comment: Accepted for publication in PASP. 10 pages, 12 figures

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Connection between a possible fifth force and the direct detection of Dark Matter

    Full text link
    If there is a fifth force in the dark sector and dark sector particles interact non-gravitationally with ordinary matter, quantum corrections generically lead to a fifth force in the visible sector. We show how the strong experimental limits on fifth forces in the visible sector constrain the direct detection cross section, and the strength of the fifth force in the dark sector. If the latter is comparable to gravity, the spin-independent direct detection cross section must typically be <~ 10^{-55} cm^2. The anomalous acceleration of ordinary matter falling towards dark matter is also constrained: \eta_{OM-DM} <~ 10^{-8}.Comment: 4 pages, 2 figures. v3: contains a more detailed treatment of the spin-dependence of the effective interaction between dark matter and ordinary matte

    Three-loop HTL QCD thermodynamics

    Get PDF
    The hard-thermal-loop perturbation theory (HTLpt) framework is used to calculate the thermodynamic functions of a quark-gluon plasma to three-loop order. This is the highest order accessible by finite temperature perturbation theory applied to a non-Abelian gauge theory before the high-temperature infrared catastrophe. All ultraviolet divergences are eliminated by renormalization of the vacuum, the HTL mass parameters, and the strong coupling constant. After choosing a prescription for the mass parameters, the three-loop results for the pressure and trace anomaly are found to be in very good agreement with recent lattice data down to T23TcT \sim 2-3\,T_c, which are temperatures accessible by current and forthcoming heavy-ion collision experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE

    Barriers to the Adoption of the ART Approach as Perceived by Dental Practitioners in Governmental Dental Clinics, in Tanzania.

    Get PDF
    This study aimed to determine the magnitude of the barriers to the practice of Atraumatic Restorative Treatment (ART) as perceived by dental practitioners working in pilot dental clinics, and determine the influence of these barriers on the practice of ART. A validated and tested questionnaire on barriers that may hinder the practice of ART was administered to 20 practitioners working in 13 pilot clinics. Factor analysis was performed to generate barrier factors. These were patient load, management support, cost sharing, ART skills and operator opinion. The pilot clinics kept records of teeth extracted; teeth restored by conventional approach and teeth restored by ART approach. These treatment records were used to compute the percentage of ART restorations to total teeth treated, percentage of ART restorations to total teeth restored and percentage of total restorations to total teeth treated. The mean barrier scores were generated and compared to independent variables, using the t-test. The influence of barriers to ART-related dependent variables was determined using Pearson correlation coefficients. Mean barrier values were low, indicating low influence on ART practice. Female practitioners had higher scores on patient load than male practitioners (p = 0.003). Assistant Dental Officers had higher scores on cost sharing than Dental Therapists (p = 0.024). Practitioners working in urban clinics had higher mean scores on patient load than those who worked in rural clinics (p = 0.0008). All barrier factors were negatively correlated with ART practice indices but all had insignificant association with ART practice indices. The barriers studied were of low magnitude, with no significant impact on practice of ART in dental clinics in the pilot area
    corecore