159 research outputs found

    Severe hepatopathy and neurological deterioration after start of valproate treatment in a 6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency

    Get PDF
    Background: The first subjects with deficiency of mitochondrial tryptophanyl-tRNA synthetase (WARS2) were reported in 2017. Their clinical characteristics can be subdivided into three phenotypes (neonatal phenotype, severe infantile onset phenotype, Parkinson-like phenotype). Results: Here, we report on a subject who presented with early developmental delay, motor weakness and intellectual disability and who was considered during several years as having a non-progressive encephalopathy. At the age of six years, she had an epileptic seizure which was treated with sodium valproate. In the months after treatment was started, she developed acute liver failure and severe progressive encephalopathy. Although valproate was discontinued, she died six months later. Spectrophotometric analysis of the oxidative phosphorylation complexes in liver revealed a deficient activity of complex III and low normal activities of the complexes I and IV. Activity staining in the BN-PAGE gel confirmed the low activities of complex I, III and IV and, in addition, showed the presence of a subcomplex of complex V. Histochemically, a mosaic pattern was seen in hepatocytes after cytochrome c oxidase staining. Using Whole Exome Sequencing two known pathogenic variants were detected in WARS2 (c. 797delC, p. Pro266ArgfsTer10/c. 938 A > T, p. Lys313Met). Conclusion: This is the first report of severe hepatopathy in a subject with WARS2 deficiency. The hepatopathy occurred soon after start of sodium valproate treatment. In the literature, valproate-induced hepatotoxicity was reported in the subjects with pathogenic mutations in POLG and TWNK. This case report illustrates that the course of the disease in the subjects with a mitochondrial defect can be non-progressive during several years. The subject reported here was first diagnosed as having cerebral palsy. Only after a mitochondriotoxic medication was started, the disease became progressive, and the diagnosis of a mitochondrial defect was made

    A bumpy ride on the diagnostic bench of massive parallel sequencing, the case of the mitochondrial genome

    Get PDF
    The advent of massive parallel sequencing (MPS) has revolutionized the field of human molecular genetics, including the diagnostic study of mitochondrial (mt) DNA dysfunction. The analysis of the complete mitochondrial genome using MPS platforms is now common and will soon outrun conventional sequencing. However, the development of a robust and reliable protocol is rather challenging. A previous pilot study for the re-sequencing of human mtDNA revealed an uneven coverage, affecting predominantly part of the plus strand. In an attempt to address this problem, we undertook a comparative study of standard and modified protocols for the Ion Torrent PGM system. We could not improve strand representation by altering the recommended shearing methodology of the standard workflow or omitting the DNA polymerase amplification step from the library construction process. However, we were able to associate coverage bias of the plus strand with a specific sequence motif. Additionally, we compared coverage and variant calling across technologies. The same samples were also sequenced on a MiSeq device which showed that coverage and heteroplasmic variant calling were much improved

    Mild myopathic phenotype in a patient with homozygous c.416C > T mutation in TK2 gene

    Get PDF
    The mitochondrial DNA depletion syndrome (MDDS) is characterized by extensive phenotypic variability and is due to nuclear gene mutations resulting in reduced mtDNA copy number. Thymidine kinase 2 (TK2) mutations are well known to be associated with MDDS. Few severely affected cases carrying the c.416C > T mutation in TK2 gene have been described so far. We describe the case of a 14months boy with the aforementioned TK2 gene pathogenic mutation at a homozygous state, presenting with a mild clinical phenotype. In addition to severe mitochondrial pathology on muscle biopsy, there was also histochemical evidence of adenylate deaminase deficiency. Overall, this report serves to further expand the clinical spectrum of TK2 mutations associated with MDDS

    Leigh syndrome followed by parkinsonism in an adult with homozygous c.626C > T mutation in MTFMT

    Get PDF
    Objective : To report the clinical, radiologic, biochemical, and molecular characteristics in a 46-year-old participant with adult-onset Leigh syndrome (LS), followed by parkinsonism. Methods : Case description with diagnostic workup included blood and CSF analysis, skeletal muscle investigations, blue native polyacrylamide gel electrophoresis, whole exome sequencing targeting nuclear genes involved in mitochondrial transcription and translation, cerebral MRI, 123I-FP-CIT brain single-photon emission computed tomography (SPECT), and C-11 raclopride positron emission tomography (PET). Results : The participant was found to have a defect in the oxidative phosphorylation caused by a c.626C>T mutation in the gene coding for mitochondrial methionyl-tRNA formyltransferase (MTFMT), which is a pathogenic mutation affecting intramitochondrial protein translation. The proband had a normal concentration of lactate in blood and no abnormal microscopic findings in skeletal muscle. Cerebral MRI showed bilateral lesions in the striatum, mesencephalon, pons, and medial thalamus. Lactate concentration in CSF was increased. FP-CIT SPECT and C-11 raclopride PET demonstrated a defect in the dopaminergic system. Conclusions : We report on a case with adult-onset LS related to a MTFMT mutation. Two years after the onset of symptoms of LS, the proband developed a parkinson-like disease. The c.626C>T mutation is the most common pathogenic mutation found in 22 patients reported earlier in the literature with a defect in MTFMT. The age of the previously reported cases varied between 14 months and 24 years. Our report expands the phenotypical spectrum of MTFMT-related neurologic disease and provides clinical evidence for involvement of MTFMT in extrapyramidal syndromes

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?

    Get PDF
    BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin

    Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?

    Get PDF
    Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and

    Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In muscle cytochrome oxidase (COX) negative fibers (mitochondrial mosaics) have often been visualized.</p> <p>Methods</p> <p>COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis.</p> <p>Results</p> <p>Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of <it>POLG </it>were subsequently found in both the 2nd and 3rd patients.</p> <p>Conclusion</p> <p>Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent than observed until now. A novel pathogenic mutation in <it>POLG </it>is reported.</p> <p>Tentative explanations for the mitochondrial mosaics are, in one patient, unequal partition of mutated mitochondria during mitoses, and in two others, an interaction between products of several genes required for mtDNA maintenance.</p
    corecore