71 research outputs found

    Checkmate to CHK1 in T-cell ALL?

    Get PDF
    © Impact Journals, LLC.DNA replication ensures accurate duplication of the original genetic information present in a cell in order for it to be properly transmitted to daughter cells. However, replication can be perturbed, for instance in rapidly dividing cancer cells, in a process referred to as replication stress (RS). Checkpoint kinase 1 (CHK1) is an essential component of the ATR-dependent DNA damageresponse pathway that protect cells from RS by preventing replication fork collapse and activating homologous DNA repair. The ATR-CHK1 pathway is triggered upon exposure of single-stranded DNA that arises with the stalling of replication forks, and it is required to reset proper origin firing, and to promote fork stability and checkpoint activation, delaying mitosis until replication is completed and thereby avoiding mitotic catastrophe.info:eu-repo/semantics/publishedVersio

    Multifaceted CK2 in malignant and healthy T cells

    Get PDF
    Copyright © Ribeiro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and re-production in any medium, provided the original author and source are credited.Among kinases that support the survival and turnover of tumor cells, the serine/threonine protein kinase CK2 has been shown to be frequently overexpressed or hyperactivated in solid and hematological malignancies. Our previous work on T-cell acute lymphoblastic leukemia (T-ALL) showed that CK2 maintains leukemia cell viability by phosphorylating and thereby inactivating the tumor suppressor PTEN, which results in hyperactivation of PI3K/AKT signaling. We also demonstrated the potential of using the clinical-grade CK2-specific chemical inhibitor, CX-4945 (Silmitasertib), against primary T-ALL cells. We have now extended these findings to the rare (<10% of all cases) form of T-ALL that derives from the transformation of thymocytes belonging to the γδ T-cell lineage.info:eu-repo/semantics/publishedVersio

    IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: an update

    Get PDF
    © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/)Interleukin 7 (IL-7) and its receptor (IL-7R, a heterodimer of IL-7Rα and γc) are essential for normal lymphoid development. In their absence, severe combined immunodeficiency occurs. By contrast, excessive IL-7/IL-7R-mediated signaling can drive lymphoid leukemia development, disease acceleration and resistance to chemotherapy. IL-7 and IL-7R activate three main pathways: STAT5, PI3K/Akt/mTOR and MEK/Erk, ultimately leading to the promotion of leukemia cell viability, cell cycle progression and growth. However, the contribution of each of these pathways towards particular functional outcomes is still not completely known and appears to differ between normal and malignant states. For example, IL-7 upregulates Bcl-2 in a PI3K/Akt/mTOR-dependent and STAT5-independent manner in T-ALL cells. This is a 'symmetric image' of what apparently happens in normal lymphoid cells, where PI3K/Akt/mTOR does not impact on Bcl-2 and regulates proliferation rather than survival. In this review, we provide an updated summary of the knowledge on IL-7/IL-7R-mediated signaling in the context of cancer, focusing mainly on T-cell acute lymphoblastic leukemia, where this axis has been more extensively studied.Publication costs were supported by LISBOA-01-0145-FEDER-007391, project cofunded by FEDER, through POR Lisboa2020 Programa Operacional Regional de Lisboa, PORTUGAL 2020, and Fundação para a Ciência e a Tecnologia (FCT, Portugal). The research work in JTB's lab related to the present review was supported by the grants FAPESP/20015/2014 and PTDC/MEC-HEM/31588/2017, from FCT; and by the consolidator grant ERC CoG-648455 from the European Research Council, under the European Union's Horizon 2020 research and innovation programme. JTB is an FCT investigator (consolidator). MLO is a LisbonBioMed PhD student and received a fellowship from FCT. PA received a PhD fellowship from the EU Marie Sklodowska-Curie ITN Protein Conjugates.info:eu-repo/semantics/publishedVersio

    MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia

    Get PDF
    © The Author(s) 2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness.These studies were supported by Liga Portuguesa Contra o Cancro (Terry Fox Award) and by Fundação para a Ciência e a Tecnologia (project PTDC/BIM-ONC/1548/2012). N.C.C. received an FCT-SFRH PhD fellowship. R.F. and J.T.B. are supported by FCT investigator Starting and Consolidation grants, respectively.info:eu-repo/semantics/publishedVersio

    Clinical-grade peptide-based inhibition of CK2 blocks viability and proliferation of T-ALL cells and counteracts IL-7 stimulation and stromal support

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase / signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.This work was supported by the consolidator grant ERC CoG-648455 from the European Research Council, under the European Union’s Horizon 2020 research and innovation program, and FAPESP/20015/2014 and PTDC/MEC-HEM/31588/2017 grants from Fundação para a Ciência e a Tecnologia (FCT), to JTB.info:eu-repo/semantics/publishedVersio

    Human naïve regulatory T-cells feature high steady-state turnover and are maintained by IL-7

    Get PDF
    Naïve FoxP3-expressing regulatory T-cells (Tregs) are essential to control immune responses via continuous replenishment of the activated-Treg pool with thymus-committed suppressor cells. The mechanisms underlying naïve-Treg maintenance throughout life in face of the age-associated thymic involution remain unclear. We found that in adults thymectomized early in infancy the naïve-Treg pool is remarkably well preserved, in contrast to conventional naïve CD4 T-cells. Naïve-Tregs featured high levels of cycling and pro-survival markers, even in healthy individuals, and contrasted with other circulating naïve/memory CD4 T-cell subsets in terms of their strong γc-cytokine-dependent signaling, particularly in response to IL-7. Accordingly, ex-vivo stimulation of naïve-Tregs with IL-7 induced robust cytokine-dependent signaling, Bcl-2 expression, and phosphatidylinositol 3-kinase (PI3K)-dependent proliferation, whilst preserving naïve phenotype and suppressive capacity. Altogether, our data strongly implicate IL-7 in the thymus-independent long-term survival of functional naïve-Tregs, and highlight the potential of targeting the IL-7 pathway to modulate Tregs in different clinical settings.This work was supported by Fundação para a Ciência e Tecnologia (FCT; POCI2010/IC/83068/2007 to RMMV; PTDC/SAU-MIC/109786/2009 to AES), and Gulbenkian Foundation (96526/2009 to JF; P132532/2013 to AES). SLS, ASA, RBF, ARP, PM and SMF received FCT scholarships

    Comparative descriptions of eggs from three species of Rhodnius (Hemiptera: Reduviidae: Triatominae)

    Get PDF
    The authors describe and compare the morphological and ultrastructural characteristics of eggs from the three most recent described species of the genus Rhodnius Stål, 1859, which have not previously been studied. These species are Rhodnius colombiensis (Mejia, Galvão & Jurberg 1999), Rhodnius milesi (Carcavallo, Rocha, Galvão & Jurberg 2001) and Rhodnius stali (Lent, Jurberg & Galvão 1993). The results revealed that there are similarities in the exochorial architecture of optical microscopy and scanning electron microscopy; these include the predominance of hexagonal cells that are common to all Rhodnius species and variable degrees of lateral flattening, which is common not only to species of this genus, but also to the Rhodniini tribe. Differences in overall colour, the presence of a collar in R. milesi, a longitudinal bevel in R. stali and the precise length of R. colombiensis can be useful distinguishing features. As a result of this study, the key for egg identification proposed by Barata in 1981 can be updated.European Community - Chagas Disease Intervention ActivitiesCNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Highly Active Microbial Phosphoantigen Induces Rapid yet Sustained MEK/Erk- and PI-3K/Akt-Mediated Signal Transduction in Anti-Tumor Human γδ T-Cells

    Get PDF
    BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR)-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+) T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+) TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of efficient cancer immunotherapy strategies critically depends on our capacity to maximize anti-tumor effector T-cell responses. By characterizing the intracellular mechanisms of HMB-PP-mediated activation of the highly cytotoxic Vgamma9(+) T-cell subset, our data strongly support the usage of this microbial antigen in novel cancer clinical trials

    Primary cilia contribute to the aggressiveness of atypical teratoid/rhabdoid tumors

    Get PDF
    Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target

    An instructive role for Interleukin-7 receptor α in the development of human B-cell precursor leukemia

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.This work was supported by the Israel Science Foundation (# 1178/12 to S.I.), Children with Cancer (UK) (S.I. and T.E.), Swiss Bridge Foundation (S.I.), WLBH Foundation (S.I.), Waxman Cancer Research Foundation (S.I.), US–Israel Binational Science Foundation, Israeli health ministry ERA-NET program (#CANCER11-FP-127 to S.I.), Hans Neufeld Stiftung, the International Collaboration Grant from the Jacki and Bruce Barron Cancer Research Scholars’ Program, a partnership of the Israel Cancer Research Fund and City of Hope (S.I. grants # 00161), the Nevzlin Genomic Center for Precision Medicine in Schneider Children’s Medical Center of Israel, The European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813091 (S.I.) and the Israel Childhood Cancer Foundation (S.I.). I.G. was partially supported by Israeli ministry of Immigrant Absorption.info:eu-repo/semantics/publishedVersio
    • …
    corecore