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Abstract: Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia
(T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face
long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations.
We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin
homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase
(PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also
revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin
7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300,
a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that
CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples.
Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing
the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and
pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2
itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only
partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated
direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300
downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context
of IL-7 stimulation, CIGB-300 blocks janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2
therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the
effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this
aggressive malignancy.

Keywords: T-cell acute lymphoblastic leukemia (T-ALL); CIGB-300; Casein kinase 2 (CK2);
IL-7 receptor (IL-7R); IL-7-mediated signaling; Stromal support; Signaling therapies

1. Introduction

Acute lymphoblastic leukemia (ALL) is a major childhood cancer and an aggressive hematological
malignancy. Patients with ALL of T-cell origin (T-ALL) are considered high risk and, as such,
are treated with intensive chemotherapeutic regimens. This has led to very high treatment efficacy,
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with event-free survival rates at 5 years reaching 90%. However, this success is not without caveats:
short- and long-term toxicities are considerable, and relapsed patients have an extremely poor prognosis.
Moreover, in adults, therapeutic success is considerably less impressive: only 30–40% of the cases
survive long-term. This stresses the need for new therapeutic drugs. Such compounds should selectively
target specific genetic lesions and/or pathways connected to T-ALL cell survival and proliferation
while sparing normal cells. Major signaling pathways contributing to the expansion and maintenance
of T-ALL cells include phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase
(MAPK), and janus kinase/signal transducer and activator of transcription (JAK/STAT) [1]. Particularly,
the PI3K/Akt pathway has been found consistently hyperactivated in roughly 88% of T-ALL clinical
samples [2] due to different mechanisms [3–5]. Accordingly, an increasing number of targeting agents
against components of PI3K/Akt signaling pathway is being investigated in Phase I/II clinical trials for
T-ALL treatment [6].

One of the emerging players in T-ALL biology is CK2 (also known as casein kinase 2), a constitutively
active serine/threonine protein kinase whose activity accounts for nearly 20% of the human
phosphoproteome and is implicated in a myriad of cellular processes [7,8]. The role of CK2 in
the maintenance of malignant phenotypes has been extensively studied in solid tumors (reviewed
in [9]), and in hematological malignancies (reviewed in [10] and [11]), including in ALL [2,12–18].
The role of CK2 in T-ALL in particular, with evidence that CK2 accelerates T-cell leukemogenesis
in mice, has been recognized for years [19]. CK2 is overexpressed in primary T-ALL cells [2,15],
and CK2-mediated phosphorylation of phosphatase and tensin homologue (PTEN) at S380 induces the
stabilization of the phosphatase in a non-functional state [20], leading to aberrant PI3K/Akt signaling
activation and consequently increased leukemia cell survival and proliferation [2]. This effect may
be reinforced by the fact that CK2 phosphorylates Akt at S129, contributing to its full activation [21].
In addition to the impact of CK2 on PTEN and PI3K/Akt-mediated signaling, CK2 can promote B- and
T-ALL also via regulation of Ikaros [22]. Moreover, there is evidence for a crosstalk between CK2 and
JAK/STAT signaling pathway that can contribute to leukemia cell survival and proliferation [23–25],
including in response to critical microenvironmental stimuli, such as interleukin-7 (IL-7) [25,26].

These findings fostered the exploration of CK2 inhibitors in T-ALL [27], leading to the clear
demonstration that pharmacological abrogation of CK2 activity, alone [2,27] or in combination with
other targeted therapies [15,18,25,28,29], leads to leukemia cell death in vitro and delays tumor
progression in vivo [27]. The therapeutic potential of CK2 inhibitors for T-ALL treatment is illustrated
by these studies. However, only CX-4945 (also known as Silmitarsetib [30,31]), and the cyclic peptide
CIGB-300 [32] have been tested in cancer clinical trials. CIGB-300 is a peptide chimera containing
a cell-penetrating moiety and designed to impair CK2-mediated phosphorylation by binding to the
substrate conserved phosphoacceptor sites [32]. This peptide exhibited pro-apoptotic and antitumor
effects in different pre-clinical cancer models [33–35] and has been tested in Phase I/II clinical trials for
the treatment of cervix and lung cancers [36–38]. Whereas CX-4945/silmitarsetib has been evaluated
in a diversity of T-ALL studies [15,25,27,28], the anti-tumoral effects and mechanisms of action of
CIGB-300 in this malignancy remain unaddressed.

Here, we evaluated the impact of CIGB-300 on T-ALL cell viability and proliferation. Taking into
consideration the role of IL-7 in promoting T-ALL cell survival and proliferation in vitro [39–43]
and T-ALL expansion in vivo [44,45], we also determined the ability of CIGB-300 to target leukemia
cells in the presence of IL-7. Furthermore, since other extrinsic signals can contribute to T-ALL cell
survival, we evaluated whether murine OP9-delta-like 1 (DL1) stromal cells counteracted the cytotoxic
effect of CIGB-300 in co-culture experiments. We demonstrate that CIGB-300 reduces the viability
and proliferation of T-ALL cells even in the context of IL-7- or stromal-mediated supportive signals.
While CIGB-300 binds to and impairs the phosphorylation of nucleophosmin 1 (B23/NPM1), previously
described as the molecular target of CIGB-300 in solid tumor cells [46], the anti-leukemic effects of
CIGB-300 in malignant T cells appear to be explained by direct CK2 enzyme inhibition.



Cancers 2020, 12, 1377 3 of 17

2. Results

2.1. CIGB-300 Negatively Impacts Viability and Proliferation of T-ALL Cells

To evaluate the effect of CIGB-300 on the viability of T-ALL cells we selected six well-established
cell lines representing different oncogenic subgroups and stages of maturation (Table 1).

Table 1. Oncogenic subgroup and immunophenotype of Acute lymphoblastic leukemia of T-cell origin
(T-ALL) cell lines and primary patient cells collected at diagnosis.

Subgroup Immunophenotype

T-ALL cell lines

ALL-SIL TLX1 CD3− CD4+ CD8+
CEM TAL1 CD3− CD4+ CD8−

MOLT4 TAL1 CD3− CD4+ CD8+
P12-ICHIKAWA LMO2 CD3− CD4+ CD8−

HPB-ALL TLX3 CD3+ CD4+ CD8+
DND4.1 TLX3 CD3+ CD4+ CD8−

Primary T-ALL samples

Pat#64 LMO2 CD3− CD4+ CD8+
Pat#111 LMO2-LYL1 CD3− CD4− CD8−
Pat#123 ND 1 CD3− CD4− CD8−
Pat#178 TAL1 CD3− CD4+ CD8+

Pat#179 ND 1 CD3− CD4− CD8−
1 ND—not determined.

CIGB-300 had a dose-dependent inhibitory effect on the viability and/or proliferation of all the
tested cell lines, with half-inhibitory concentrations (IC50) ranging from 17 to 31 µM (mean IC50 =

23.8 µM) as measured using Alamar Blue (Figure 1A). The impact of CIGB-300 on the proliferation
of HPB-ALL and MOLT4 cells was discriminated by the evaluation of 3H-thymidine incorporation.
CIGB-300 inhibited proliferation of both cell lines in a dose-dependent manner (Figure 1B), whereas a
control peptide (F20-2), containing only the cell-penetrating moiety of CIGB-300 [32], did not have any
significant impact (Figure 1B). Furthermore, CIGB-300 promoted T-ALL cell apoptosis as measured by
Annexin V-APC conjugate and 7-aminoactinomycin D (7-AAD) staining (Figure 1C) and caspase 3 and
poly (ADP-ribose) polymerase (PARP) cleavage (Figure 1D). As expected, the negative control peptide
F20-2 did not upregulate caspase 3 or PARP cleavage, and the CK2 small molecule inhibitor CX-4945
induced a strong cleavage (Figure 1D).

Figure 1. CIGB-300 negatively impacts the viability and proliferation of T-ALL cells. The indicated T-ALL
cell lines were cultured for 72 h with increasing concentrations of CIGB-300. (A) Viability/proliferation
was evaluated by Alamar Blue. (B) Proliferation was measured by 3H-thymidine incorporation. (C)



Cancers 2020, 12, 1377 4 of 17

Viability of HPB-ALL and MOLT4 cells was evaluated by Annexin V- APC conjugate/7-aminoactinomycin
D (7-AAD) staining after 16 h in the presence of CIGB-300 at 18 µM. (D) Detection of poly (ADP-ribose)
polymerase (PARP) and caspase-3 cleavage was determined in HPB-ALL cells by western blot after
treatment with CIGB-300 (18 µM), CX-4945 (12 µM) or control peptide F20-2 (18 µM) for the indicated
time intervals. Relative densitometry analysis values of cleaved PARP and cleaved caspase 3 (17 kDa)
bands, normalized to medium, are indicated. Results from (A,B) represent mean ± SD of 3 replicates,
while those from (C,D) are representative of 2 independent experiments (2 replicates each).

2.2. CIGB-300 Impairs CK2-Mediated Phosphorylation of PTEN, Akt and B23/NPM1

The effect of CIGB-300 on the phosphorylation of two CK2 direct substrates involved in T-ALL
biology (PTEN and Akt), as well as downstream signaling players forkhead box O1/3 (FoxO1/3),
cyclin-dependent kinase inhibitor 1B (CDKN1B/p27kip1) and ribosomal protein S6 (S6), was evaluated in
HPB-ALL cells. In addition, we analyzed the levels of B23/NPM1, a known molecular target of CIGB-300
in solid tumor cells [46]. As we previously reported, CIGB-300 blocked the phosphorylation of S125
residue on B23/NPM1 after 2 h of incubation (Figure 2A). CIGB-300 also impaired the phosphorylation
of CK2-phosphoaceptor residues on PTEN (S380) and Akt (S129) after 6 h (Figure 2A), similar to our
previous findings on chronic lymphocytic leukemia (CLL) cells [47]. Accordingly, phosphorylation of
PI3K/Akt downstream targets FoxO1/3 (T24/32), p27kip1 (T187), and S6 (S235/236) were also inhibited
by CIGB-300 (Figure 2A). As expected, CX-4945 inhibited Akt phosphorylation at both S129 and S473,
whereas the PI3K inhibitor LY294002 did not affect phosphorylation at S129 (directly mediated by
CK2) but abrogated S473 phosphorylation, which depends on the balance between PI3K and PTEN
activities (Figure 2A).

Figure 2. Effect of CIGB-300 on CK2-mediated phosphorylation of Akt, PTEN, B23/NPM1 and their
potential interactions in HPB-ALL cells. (A) Phosphorylated and total protein levels of CK2 substrates
Akt, PTEN, and B23/NPM1, and PI3K/Akt pathway members, in HPB-ALL cells incubated with either
18 µM of CIGB-300 or the inhibitors CX-4945 (CX, 12 µM) and LY294002 (LY, 10 µM) for the indicated
time. Actin was used as loading control. (B) Immunoblots from pull-down fractions using CIGB-300
conjugated to biotin as bait to capture interacting proteins. HPB-ALL cells were incubated for 1 h
with biotin-tagged peptide (50 µM), subsequently lysed and submitted to SDS-PAGE and antibody
detection as indicated. The experiments were performed in RPMI with or without 10% FBS (R10 or R0,
respectively), as indicated. (C) Pull-down performed with cellular lysates of HPB-ALL cells as indicated
above. CE, Cellular Extract. PD, Pull-Down fractions. PASS, flow-through fractions. NC, negative
control (cellular lysate from HPB-ALL cells incubated with vehicle).
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To determine whether CIGB-300 directly interacts with PTEN, Akt or B23/NPM1, we next
performed pull-down experiments in HPB-ALL cells. In both experimental conditions (medium
with serum, R10, and without serum, R0) we detected a clear interaction between CIGB-300 and
B23/NPM1, a weak interaction with Akt, and no interaction with PTEN (Figure 2B). The lack of
interaction between CIGB-300 and PTEN, as well as the mild interaction with Akt, was intriguing,
given the clearly inhibitory effects of CIGB-300 on PTEN S380 phosphorylation (which is known to be
directly mediated by CK2) and on phosphorylation of Akt and its downstream targets (Figure 2A).
Therefore, we hypothesized that CIGB-300 may directly bind to CK2 and thereby inhibit CK2 activity
(towards at least the substrates we analyzed). Our pull-down experiments confirmed that CIGB-300
can bind to CK2α catalytic subunit (Figure 2C).

2.3. B23/NPM1 Is not a Major Target for CIGB-300 in T-ALL Cells

Given the importance of B23/NPM1 inhibition for the effect of CIGB-300 in solid tumors, we next
investigated whether a similar mechanism could account for CIGB-300 anti-leukemia effects by silencing
NPM1 in HPB-ALL cells. The cells were incubated with lentiviral particles (LV) expressing an shRNA
against the 3’-UTR of NPM1 and the infected, green fluorescent protein (GFP)-positive, population was
examined by flow cytometry for at least two weeks (Figure 3). HPB-ALL cells transduced with either
empty vector (pLG) or NPM1 shRNA showed no difference in viability (Figure 3A), despite a knock
down of B23/NPM1 protein levels of at least 60% (Figure 3B). After 9 days of LV infection, roughly 50%
of transduced HPB-ALL cells were GFP-positive, irrespective of the condition (Figure 3A,C), suggesting
that decreased B23/NPM1 expression did not negatively impact T-ALL cell fitness. Indeed, HPB-ALL
cells were followed for two weeks after transduction with empty vector or NPM1 shRNA and
consistently presented similar levels of GFP expression (Figure 3C) and viability (Figure 3D) in both
conditions. Finally, the effect of CIGB-300 on the viability of HPB-ALL cells was not affected by NPM1
silencing (Figure 3E). Overall, these results indicate that, despite the binding between the two occurring
in T-ALL cells, B23/NPM1 inhibition does not appear to have a critical role in the anti-leukemia effects
of CIGB-300.

Figure 3. Silencing of NPM1 does not mimic the effects of CIGB-300 on HPB-ALL cells. HPB-ALL
cells were transduced with mock vector or shRNA against NPM1 and analyzed by flow cytometry at
indicated time intervals. (A) Percentage of transduced cells on live-cell populations, as identified by
forward scatter (FSC) × side scatter (SSC) discrimination (R1 gate in dot plots on the left),
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was determined by analysis of GFP expression at day 9 post-infection (histograms on the right).
Percentage of GFP-positive cells was calculated using untransduced cells as a negative control. (B)
Immunoblot analysis of transduced cells showing B23/NPM1 protein knock down in total unsorted
population (~60% decrease) and sorted GFP-positive cells (~90% decrease). Actin was used as a loading
control. Relative densitometry analysis values of B23/NPM bands normalized to actin and then to
either untransduced (unsorted cells) or LV-pLG (sorted cells) lanes are indicated. (C,D) Analysis of (C)
GFP expression within the live cell population and (D) viability of HPB-ALL cells at the indicated time
points after transduction. (E) Cytotoxic effect of CIGB-300 (18 µM) on LV-pLG or LV-shRNA NPM1
transduced HPB-ALL cells as assessed by propidium iodide (PI) staining and flow cytometry analysis.

2.4. The Effects of CIGB-300 on T-ALL Cells Are not Reversed by IL-7 Stimulation or Stromal Support

We next evaluated whether the effects of CIGB-300 on viability and proliferation of T-ALL cells
could be counteracted by IL-7-mediated signals, which are known to prevent apoptosis and promote
T-ALL growth in vitro and in vivo [26]. As expected [48], addition of IL-7 to the culture medium
increased the survival of HPB-ALL cells (Figure 4A,B). However, the pro-survival effect of IL-7
was completely blocked by CIGB-300 (Figure 4B). At the molecular level, CIGB-300 downregulated
both basal and IL-7-mediated Akt, p27kip1, and S6 phosphorylation in HPB-ALL cells (Figure 4C).
Likewise, IL-7-mediated activation of JAK/STAT pathway, measured by JAK1, JAK3, and STAT5
phosphorylation, was blocked by pre-treatment with CIGB-300 (Figure 4C).

Figure 4. CIGB-300 decreases the viability and proliferation of T-ALL cells irrespectively of
IL-7-stimulation. (A) Evaluation of HPB-ALL cell viability by FSC × SSC discrimination and flow
cytometry analysis after stimulation with IL-7 (50 ng/mL) for 48 h. (B) Evaluation of HPB-ALL cell
viability by 7-AAD staining and flow cytometry analysis, after 48 h of incubation with 18 µM of
CIGB-300 in the presence or absence of IL-7 (50 ng/mL). (C) Immunoblot analysis of PI3K/Akt and
JAK/STAT signaling pathway activation. HPB-ALL cells cultured for 24 h in low serum (R1) were
pre-incubated for 15 min with the CIGB-300 or F20-2 (18 µM) and then incubated with IL-7 (50 ng/mL)
or medium for 45 min or 3h 45min (for a total of 1 or 4 h). Control cells were (pre)incubated with vehicle
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alone for a total of 1h. (D,E) TAIL7 cells were incubated with different concentrations of CIGB-300
with or without IL-7 (20 ng/mL) and cell viability and proliferation were measured by Alamar Blue
(D) and 3H-thymidine incorporation (E) at 48 h. (F) Annexin V-APC/7-AAD dot plots of HPB-ALL
cells treated as above and incubated with CIGB-300 at 18 µM for 16 h. (G) Effect of CIGB-300 on the
phosphorylation of indicated proteins in TAIL7 cells stimulated or not with IL-7 (20 ng/mL). The cells
were pre-incubated during 15 min with CIGB-300 (18 µM) or vehicle in medium (R1), and then IL-7 or
medium were added to complete 1 h of incubation.

To corroborate these findings, we next evaluated the impact of CIGB-300 on the T-ALL primary
leukemia-like IL-7-dependent cell line TAIL7. Alamar Blue, 3H-thymidine and Annexin V/7-AAD
staining assays demonstrated that CIGB-300 reduced the viability and proliferation of TAIL7 cells
irrespectively of IL-7 stimulation (Figure 4D–F). Similar to the results in HPB-ALL cells, CIGB-300
abrogated JAK1/STAT5 signaling upon IL-7 stimulation, and downregulated the phosphorylation of
Akt, p27kip1, and S6 in TAIL7 cells (Figure 4G).

Because IL-7 is not the only external cue that may counteract the impact of CIGB-300, we next
evaluated whether stromal support inhibited CIGB-300 anti-T-ALL effects. We co-cultured MOLT4 and
HPB-ALL cells with murine OP9 cells expressing human Notch ligand Delta-like 1 (OP9-hDL1) and
assessed the pro-apoptotic effects of CIGB-300. Annexin V/7-AAD staining showed that a potent dose
of CIGB-300 (IC85) abrogated leukemia cell viability irrespectively of the survival signals provided by
stromal cells (Figure 5A). Although we still observed some mild OP9-DL1 supportive effects at this
peptide dose, they were not sufficient to reverse CIGB-300 cytotoxic effect (Figure 5A). Moreover, bright
field microscopy analysis of Trypan Blue staining of MOLT4 and HPB-ALL co-cultured with OP9-hDL1
cells and treated with CIGB-300 for 48 h showed a dose-dependent cytotoxic effect of the peptide
specifically on leukemia cells but not on the stromal monolayer (Figure 5B).

Figure 5. CIGB-300 decreases the viability of T-ALL cells co-cultured with OP9-hDL1 stromal cells.
MOLT4 and HPB-ALL cells were cultured alone or with OP9-hDL1 cells for 48 h with or without the
indicated concentrations of CIGB-300. Cell viability was determined by (A) Annexin V-APC/7-AAD
staining and flow cytometry, or (B) Trypan blue staining and light microscopy. Results shown in (A)
are mean ± SD of triplicates. At least two independent experiments were performed on each case.
ns, not significant; **** p-value < 0.0001.
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2.5. Primary T-ALL Patient Cells Are Sensitive to CIGB-300 even in the Presence of IL-7

To further explore the therapeutic potential of CIGB-300 we next cultured primary T-ALL cells
collected from pediatric patients at diagnosis (Table 1) for 48 h with or with IL-7 in the presence or
absence of CIGB-300. The peptide decreased the viability of all tested primary samples in medium
without IL-7 (Figure 6A). Addition of IL-7 provided a viability push in 4 of the 5 tested T-ALL samples
(Figure 6A). However, this effect was reversed by CIGB-300 (Figure 6A), suggesting that CIGB-300
should have an anti-T-ALL effect even in IL-7-rich in vivo niches. The cytotoxic effect of CIGB-300
in the presence of IL-7 correlated with the ability of CIGB-300 to block IL-7-mediated JAK/STAT
pathway activation, as measured by JAK1, JAK3 and STAT5 phosphorylation, and to downregulate
IL-7-mediated PI3K/Akt pathway activation, as measured by Akt and S6 phosphorylation (Figure 6C).

Figure 6. Primary T-ALL patient cells are sensitive to CIGB-300 even in the presence of IL-7. (A,B) T-ALL
cells isolated from peripheral blood or bone marrow of pediatric patients at diagnosis were incubated
with or without IL-7 and the indicated concentrations of CIGB-300 for 48 h and subsequently analyzed
by flow cytometry to determine cell viability. (A) Percentage of viable cells for each patient sample
in the indicated conditions. Impact of IL-7 stimulation on primary T-ALL cell viability is shown as
fold change compared to unstimulated cells. (B) FSC × SSC dot plots of two representative primary
T-ALL samples. Percentage of viable cells is indicated. (C) Immunoblots with indicated antibodies
using lysates from primary T-ALL cells from Patient #179. Cells were pre-incubated for 15 min with or
without CIGB-300 (30 µM) and then IL-7 (20 ng/mL) was added for 45 min.

3. Discussion

We have previously shown that CK2 inactivates PTEN and thereby leads to PI3K/Akt signaling
pathway hyperactivation and consequent T-ALL cell survival in vitro [2] and in vivo [27]. We have
also demonstrated that similar mechanisms of CK2-mediated PTEN inactivation exist in B-ALL and
CLL and are of relevance for leukemia cell maintenance [12,47,49]. Moreover, CK2 is relevant in
biology, and resistance to therapy, of acute myeloid leukemia (AML) and chronic myeloid leukemia
(CML) [11,50–53]. Thus, there is a clear rationale to explore the use of CK2 inhibitors in the clinical
setting in different leukemias, including T-ALL. However, to our knowledge, only two molecules
targeting CK2-mediated signaling have reached the clinical stage, namely CX-4945/Silmitasertib and
CIGB-300 [31,36].
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Contrary to conventional ATP-competitive inhibitors that target the catalytic subunits of CK2,
CIGB-300 impairs CK2-mediated phosphorylation by direct binding to a conserved phosphoacceptor
domain [32]. Previous preclinical and clinical studies have demonstrated the antineoplastic potential of
CIGB-300 in solid tumors [33–38]. However, the exploration of this anti-CK2 peptide in hematological
cancers is still limited [47]. Here, we pre-clinically evaluated the impact of the clinical-grade
peptide-based CK2 inhibitor CIGB-300 on T-ALL cell lines and primary cells belonging to different
oncogenic subgroups and blocked at distinct stages of maturation. Our studies demonstrated that
CIGB-300 had a broad, dose-depended negative impact on the viability and proliferation of T-ALL cells.

To identify potential CK2 substrates that can be targeted by CIGB-300 in T-ALL cells, we conducted
signaling experiments with antibodies directed against CK2 phosphoacceptor sites in Akt (S129) and
PTEN (S380), as well as against B23/NPM1, previously recognized as a major target for CIGB-300 in solid
tumors [46]. Our results showed that CIGB-300 impairs the phosphorylation of Akt S129 and PTEN
S380 after short term incubation. Accordingly, the phosphorylation levels of downstream PI3K/Akt
pathway members FoxO1/3, p27kip1, and S6 also decreased, temporally preceding the cleavage of the
apoptotic marker caspase-3. CIGB-300 also reduced the phosphorylation and total protein levels of
B23/NPM1.

Subsequent pull-down experiments indicated that among the CK2 substrates evaluated,
only B23/NPM1 significantly interacts with CIGB-300 in HPB-ALL cells. However, silencing of
NPM1 produced no significant effect on viability or proliferation of T-ALL cells, and did not potentiate
the cytotoxic effect of CIGB-300. Altogether, these results indicated that B23/NPM1 is not a major
functional target of CIGB-300 in T-ALL cells.

Although CIGB-300 did not directly interact with PTEN and only mildly with Akt, it clearly
impaired their phosphorylation in HPB-ALL cells. We clarified these puzzling findings by revealing
that CIGB-300 can directly interact with the CK2α catalytic subunit of the enzyme and inhibit its activity
in T-ALL cells, as demonstrated by the inhibition of Akt S129 phosphorylation, a surrogate marker
for CK2 enzymatic activity in cells [21]. These observations explain the inhibition of Akt S473 and
PTEN S380 phosphorylation (and consequent inhibition of some of the downstream targets FoxO1/3,
S6, and p27kip1) without the requirement for direct interaction between CIGB-300 and the two CK2
substrates. In other words, besides its known binding ability to CK2 phosphoacceptor sites, CIGB-300
can also directly bind to CK2 and thereby prevent its activity towards (all or some of) its substrates.
Of note, our recent findings using cell-free CK2 kinase assays and lung cancer cells also support a
direct impairment of CK2 activity by CIGB-300 [54].

IL-7, produced in the bone marrow and thymus, is a major microenvironmental signal promoting
T-ALL cell expansion [26,39,42–44,48,55–57]. We have previously found that CK2 activity is mandatory
for optimal IL-7/IL-7R-mediated signaling. Using CX-4945, we demonstrated that CK2 pharmacological
inhibition impaired JAK/STAT5 and PI3K/Akt signaling pathway activation triggered by IL-7 or by IL7R
mutational activation [58] and consequently impaired the pro-leukemia effects of IL-7 [25]. We now
showed that CIGB-300 inhibits not only basal but also IL-7-mediated signaling and survival/proliferation
in the primary-like IL-7-dependent TAIL7 cell line [41] and, most importantly, in primary patient
samples. This is reassuring from a clinical perspective, since there is evidence that IL-7 promotes
T-ALL cell expansion in patients [44] and is known to confer resistance to other treatments, such as
glucocorticoids [59,60].

CK2 can regulate components of the JAK/STAT signaling complex, and JAKs are members of the
CK2 interactome [23,24]. Similar to CX-4945 [25], CIGB-300 impaired JAK/STAT and PI3K/Akt activation
triggered by IL-7. The rapid and strong inhibition of phosphorylation of JAK1 and JAK3, as well as of
STAT5, might be explained by the trans-activating regulatory protein (TAT)-mediated internalization
mechanism [61] used by CIGB-300. CK2 has been involved in the process of receptor internalization
through the formation of clathrin-coated pits [62], whereas IL-7 promotes IL-7R internalization by
the same endocytic pathway, which is required for optimal IL-7-mediated signaling [63]. It is thus
possible that CIGB-300, CK2, and the IL-7/IL-7R receptor complex could “prematurely meet” at the cell
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surface during the first steps of peptide internalization, thus accounting for the observed downstream
inhibition of JAK/STAT and PI3K/Akt signaling pathways, once T-ALL cells are in the presence of
IL-7. The fact that CK2 is able to physically interact with IL-7R [25] is in line with this possibility,
which warrants further investigation.

Other environmental cues produced by stromal cells in the leukemic niche also partake in the onset
and maintenance of T-ALL [3,64]. The OP9-DL1 co-culture system has emerged as a valuable in vitro
model for T-cell development but also to study the relevance of extracellular signals for leukemia
cell survival [65,66]. In addition to Notch signaling, these murine stromal cells produce a cocktail of
cytokines that promotes cell survival, proliferation, and differentiation of T-cells, hence mimicking the
in vivo microenvironment [67]. Our demonstration that CIGB-300 reduces the viability of T-ALL cells
in co-culture with OP9-DL1 cells reinforces the potential of using CIGB-300 for therapeutic purposes in
the clinical setting.

4. Materials and Methods

4.1. Cell Lines and Patient Samples

Human T-ALL cell lines HPB-ALL, MOLT4, DND-4.1, ALL-SIL, CEM, and P12 were cultured in
RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA) supplemented with 10% (vol/vol) heat-inactivated
fetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA), 10 mM penicillin-streptomycin solution,
and 2mM L-glutamine (hereafter referred to as R10 medium). Primary-like IL-7-dependent cell
line TAIL7 was maintained on IL-7 continuous culture and routinely submitted to viability and
proliferation assays to verify IL-7 responsiveness and dependency [41]. Primary T-ALL cells were
collected at the Pediatrics Service of Instituto Português de Oncologia de Lisboa Francisco Gentil,
Lisbon, Portugal, from the peripheral blood and/or bone marrow of pediatric patients with high
leukemia involvement (85–100%). Informed consent was obtained for all sample collections and
the study conducted after institutional review board approval by Gabinete de Investigação Clínica,
in accordance with the Declaration of Helsinki. Samples were enriched by density centrifugation over
Ficoll-Paque (GE Healthcare, Chicago, IL, USA) and subsequently processed as described [42]. All cell
cultures were maintained at 37 ◦C in 5% CO2.

4.2. Alamar Blue Assay

Cell viability/proliferation was determined using Alamar Blue assay (Life Technologies, Carlsbad,
CA, USA). Briefly, T-ALL cells were seeded in flat-bottom 96-wells plates as 106 cells/mL in R10 and a
curve of serial dilutions (1:2) of CIGB-300 (100–3.12 µM) were added. After 72 h, Alamar Blue was
added in an amount equal to 10% of the culture volume. Cells were further incubated at 37 °C, 5% CO2

for 2–4 h. Fluorescence was measured at wavelengths of 530 nm excitation and 580 nm emission in
an Infinite M200 plate reader (Tecan, Durham, NC, USA). The IC50 was estimated from the fitted
dose-response curves using the software Calcusyn (Biooft, Cambridge, UK) [68].

4.3. Assessment of Cell Viability

Viability of T-ALL cells was determined by flow cytometry analysis in a FACSCalibur instrument
(Becton Dickinson, Franklin Lakes, NJ, USA), after staining with Annexin V-APC (eBioscience,
San Diego, CA, USA) and 7-AAD.

4.4. 3H-Thymidine Incorporation Proliferation Assay

After T-ALL cells were exposed to selected concentrations of CIGB-300 or CX-4945 compound,
the DNA synthesis was assessed using a 3H-thymidine-based protocol. 3H-thymidine (1 Ci/well
[0.037MBq/well], PerkinElmer, Waltham, Massachusetts, USA) was added for 16 h prior to cell harvest
and measured by using a liquid scintillation counter. Proliferation index was calculated as (mean cpm
for each experimental condition)/(mean cpm for medium alone).
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4.5. Signaling Experiments

Exponentially growing HPB-ALL cells were washed and seeded in 6-well cell culture plates as
2 × 106 cells/mL using serum-free RPMI (hereafter referred to as R0). Then, selected concentrations of
CIGB-300, CX-4945, or F20-2 negative control peptide were added in dose-response experiments for
2 h or incubated during 0.5, 2, 6, 12, and 24 h in kinetic experiments. In some experiments the selective
PI3K inhibitor LY294002 (10 µM; Calbiochem, San Diego, CA, USA) was used. Signaling experiments
on TAIL7 cells were conducted after starving the cells during 24 h in RPMI with 1% FBS (Invitrogen,
Carlsbad, CA, USA). Subsequently, cells were washed, resuspended as 2 × 106 cells/mL in RPMI with
5% FBS, and incubated with CIGB-300 (18 µM) or CX-4945 (12 µM) for 1 h. In selected experiments,
15 min after addition of the drugs, 20 ng/mL of recombinant IL-7 (Peprotech, Rocky Hill, NJ, USA)
were added and incubated for 45 min. Finally, signaling experiments on IL-7-responsive HPB-ALL
cells were conducted on RPMI with 1% FBS (R1) after 24 h starvation by adding recombinant IL-7 up
to a final concentration of 50 ng/mL.

4.6. Western Blot Analysis

Cell lysates from signaling experiments were prepared as described [41], and equal amounts
of protein (50 µg/sample) were resolved by 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE), transferred onto nitrocellulose membranes, and immunoblotted with
the following antibodies: p-Akt (T308), Akt, p-PTEN (S380), PTEN, p-FoxO1/3 (T24/32), FoxO1/3,
p-S6 (S235/236), S6, p-JAK1 (Y1022/1023), p-JAK3 (Y980/981) (Cell Signaling Technology, Danvers,
MA, USA); p-Akt (S473), STAT5a, Caspase 3, Actin (Santa Cruz Biotechnology, Dallas, TX, USA);
p-B23/NPM1 (S125), B23/NPM1 (Abcam, Cambridge, UK); p-Akt (S129) (ABGent, San Diego, CA,
USA); p-P27kip (T187) (Zymed, San Francisco, CA, USA); P27kip1 (BD Pharmingen); p-STAT5a/b
(Y694/699) (Upstate Biotechnology, Lake Placid, NY, USA); PARP (Novus Biologicals, Littleton, CO,
USA) and CK2A1/A2 (BD Transduction Laboratories, San Diego, CA, USA). After immunoblotting
with antibodies, detection was performed by incubation with horseradish peroxidase-conjugated
anti–mouse, anti–rabbit (Promega, Madison, WI, USA), or anti–goat (Santa Cruz Biotechnology)
immunoglobulin (IgG; 1:5000 dilution), and developed by chemo luminescence (Amersham Pharmacia
Biotech, Little Chalfont, UK). Densitometry analysis was performed using ImageJ software and
integrated density values of each band were used to calculate values relative to the loading control in
each lane/condition. Where indicated relative values were then normalized to the respective control
conditions, or, in the case of pull-down experiments (see Section 4.7 Pull-Down), to whole-cell extracts.
Stripping and reprobing of the immunoblots were done as described [69]. Detailed information about
western blot can be found in Figures S1–S7.

4.7. Pull-Down

Pull-down experiments were performed essentially as described earlier [46]. Briefly, 20 × 106 cells
were seeded in 10 mL of R0 or R10 and incubated for 1 h with 50 µM of CIGB-300 conjugated to biotin.
Afterward, the cells were lysed in hypotonic PBS solution (0.1×) containing 1 mmol/L of DTT (Sigma,
St. Louis, MO, USA) and complete protease inhibitor (Roche, Basel, Switzerland) by eight freeze-thaw
(liquid nitrogen/37 ◦C) cycles. Then, the cellular lysate was cleared by centrifugation and 200 µg
of total protein were added to 30 µL of pre-equilibrated streptavidin-sepharose matrix (Amersham
Pharmacia Biotech, Little Chalfont, UK). After 1 h of incubation at 4 ◦C, CIGB-300´s-interacting proteins
were eluted, resolved in an SDS-PAGE gel, and transferred onto nitrocellulose membranes to perform
western blot experiments. For CK2 pull-down, CIGB-300 conjugated to biotin was incubated for 1 h at
4 ◦C with 200 µg of total protein lysates and then treated as above.
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4.8. Lentiviral Infection

The transcriptional unit for NPM1 knockdown was amplified from a pSilencer1.0–U6 siRNA
Expression Vector (Ambion, Austin, TX, USAUSA) containing a shRNA sequence against the
3′UTR region of NPM1 isoform 1 (TRCN0000062268, NPM1 MISSION shRNA, Sigma). The PCR
product was then digested and inserted into XbaI restriction site of the lentiviral transfer plasmid
pLGW [70]. This plasmid includes a GFP reporter gene under the SV40 promoter, and HIV-based
third-generation lentiviral vector elements to produce infective particles once co-transfected with
packaging plasmids pLP1, pLP2 and pLP/VSVG in HEK293T cells (ViraPower Lentiviral Packaging
Mix, Thermo Fisher Scientific, Waltham, MA, USA). Virus production and subsequent titration of
viral particles were performed according to previously described protocols [71]. HPB-ALL cells were
infected by spinoculation at a 10x multiplicity of infection (MOI10) [72]. Briefly, the cells were seeded
as 0.5 × 106 cells/mL, in preconditioned medium, with polybrene (8 µg/mL) plus the viral supernatant,
and then centrifuged at 800× g for 30 min at 32 ◦C. On the next day, fresh complete medium was
added and the cells allowed to recover for an additional 48 h. HPB-ALL cells were evaluated by
flow cytometry analysis for confirmation of GFP expression as a measure of transduction efficiency
(Cyflow, Partec, Germany).

4.9. Co-Culture Experiments

OP9-hDL1, a bone-marrow-derived murine stromal cell line that ectopically expresses the
Notch ligand Delta-like 1 (Dl1) [73] was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
medium supplemented with 10% FBS for several days until a healthy cell monolayer was evident.
Then, 2.5× 104 stromal cells were seeded onto 48-well culture plates (5× 104 cells/mL) and incubated for
24 h to allow the cells to attach. Wells were then washed twice with pre-warmed PBS and 106 cells/mL
of HPB-ALL or MOLT4 cells were added, with or without CIGB-300 (15 and 30 µM), to each well. After
48 h of incubation, the effect of CIGB-300 on T-ALL cell viability was assessed by Annexin V-APC
and 7-AAD staining and flow cytometry analysis and/or by Trypan Blue staining and bright field
microscopy evaluation of leukemic cells still attached to OP9-hDL1 cell monolayer.

4.10. Statistical Analysis

Differences between groups were calculated one-way ANOVA with Tukey’s multiple comparisons
post-test. The analyses were done using GraphPad Prism version 4.00 (GraphPad Software, San Diego,
CA, USA) for Windows. Differences were considered significant for a p-value < 0.05.

5. Conclusions

In summary, we demonstrate that the clinical-grade cell-penetrating peptide CIGB-300 is able to
block proliferation and induce cell death of both cell lines and primary T-ALL patient cells, even in the
presence of leukemia-supportive signals such as IL-7 or stromal cell co-culture. We show that CIGB-300
does so by directly binding to and inhibiting CK2 activity, consequently preventing CK2-mediated
phosphorylation of PTEN and Akt, and downregulating the activation of pro-survival PI3K/Akt and
JAK/STAT signaling pathways (Figure 7). Our studies reveal that the CIGB-300 may be a valid tool for
therapeutic intervention in T-ALL.
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Figure 7. Model of CIGB-300-mediated effects on T-ALL cells. (A) T-ALL cell viability and proliferation
relies on cell-intrinsic signals and extracellular cues such as IL-7, which activate PI3K/Akt/mTOR
and JAK/STAT pathways. CK2 phosphorylates and thereby inactivates PTEN leading to activation
of PI3K/Akt/mTOR signaling [2]. This effect is reinforced by CK2-mediated direct phosphorylation
of Akt [21]. In addition, CK2 binds to IL-7R (this interaction is not shown in the cartoon), which is
essential for IL-7-mediated maximal signaling [25]. (B) In the present study, we showed that CIGB-300,
a plasma membrane-crossing CK2 peptide antagonist [32], binds to and inhibits B23/NPM1 (which does
not appear to be critical for CIGB-300 anti-T-ALL effects) and to CK2. The effects of CIGB-300 in T-ALL
cells appear to be mediated mainly by its ability to inhibit CK2 activation, which results in reversion
of cell-intrinsic and IL-7-mediated activation of PI3K/Akt/mTOR pathway as well as abrogation of
IL-7-mediated JAK/STAT signaling. As a consequence of these effects, T-ALL cells enter apoptosis and
no longer proliferate.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1377/s1,
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