924 research outputs found

    Heat transfer to Newtonian and non-Newtonian fluids in cross-corrugated chevron-type plate heat exchangers: numerical approach

    Get PDF
    Food fluids are frequently processed in plate heat exchangers (PHEs) and usually behave as non-Newtonian fluids, this behaviour being scarcely considered for PHEs design purposes. Moreover, many food fluids processed in PHEs have a high viscosity and, therefore, data obtained in laminar flow regime is useful to practical applications. The thermal-hydraulic performance of PHEs is strongly dependent on the physical properties of the fluid and on the geometrical properties of the plates namely, on the corrugation angle and on the channel aspect ratio. The mostly widely used PHEs have corrugations of the chevron type with an area enlargement factor defined as the ratio between the effective plate area and projected plate area close to 1.17. In the present work non-isothermal laminar flows of Newtonian and power-law fluids through cross-corrugated chevron-type plate heat exchangers are studied numerically in terms of the geometry of the channels. The plates area enlargement factor was a typical one (1.17), the corrugation angle varied between 30º and 60º and the flow index behaviour, n, between 0.25 and 1. The numerical calculations were performed using the commercial finite element software package POLYFLOW®. The equations solved were the conservation of mass, momentum and energy equations for laminar incompressible flow of Newtonian and power-law fluids. The simulations were performed using channels containing seven consecutive unitary cells, since thermal and hydraulic fully developed flows were achieved in the fifth or sixth consecutive cell, as described in previous works. Coefficient K from the friction curves fRe = K compares very well with experimental and semi-theoretical data for all (seven) values of corrugation angle. Nusselt number reaches a maximum in the interior of the studied corrugation angle range, for a fixed Reynolds, Re, number. Shear thinning effects greatly affect the thermal-hydraulic performance of the plate heat exchanger

    New plates for different types of plate heat exchangers

    Get PDF
    The first patent for a plate heat exchanger was granted in 1878 to Albretch Dracke, a German inventor. The commercial embodiment of these equipments has become available in 1923. However, the plate heat exchanger development race began in the 1930’s and these gasketed plate and frame heat exchangers were mainly used as pasteurizers (e.g. for milk and beer). Industrial plate heat exchangers were introduced in the 1950’s and initially they were converted dairy models. Brazed plate heat exchangers were developed in the late 1970’s. However, copper brazed units did not start selling until the early 80’s. Nickel brazing came to market around ten years later, since copper presents compatibility problems with some streams (e.g. ammonia). All-welded and semi-welded (laser weld) plate heat exchangers were developed during the 1980’s and early 90’s. Shell and plate heat exchangers were recently introduced in the market and can withstand relatively high pressures and temperatures, as the shell and tube does. The fusion bonded plate heat exchangers (100% stainless steel) are a technology from the 21st century, these equipments being more durable than brazed plate heat exchangers. The plates are the most important elements from the different plate heat exchangers mentioned above. This paper initially introduces the gasketed plate and frame heat exchanger and common chevron-type plates. Resorting to computer fluid dynamics techniques, the complex 3D flow in cross-corrugated chevron-type plate heat exchanger passages is visualized. Recent patents related with the plates from different plate heat exchangers are then outlined

    Generic dynamics of 4-dimensional C2 Hamiltonian systems

    Get PDF
    We study the dynamical behaviour of Hamiltonian flows defined on 4-dimensional compact symplectic manifolds. We find the existence of a C2-residual set of Hamiltonians for which every regular energy surface is either Anosov or it is in the closure of energy surfaces with zero Lyapunov exponents a.e. This is in the spirit of the Bochi-Mane dichotomy for area-preserving diffeomorphisms on compact surfaces and its continuous-time version for 3-dimensional volume-preserving flows

    Renormalisation scheme for vector fields on T2 with a diophantine frequency

    Full text link
    We construct a rigorous renormalisation scheme for analytic vector fields on the 2-torus of Poincare type. We show that iterating this procedure there is convergence to a limit set with a ``Gauss map'' dynamics on it, related to the continued fraction expansion of the slope of the frequencies. This is valid for diophantine frequency vectors.Comment: final versio

    A low-power/low-voltage CMOS wireless interface at 5.7 GHz with dry electrodes for cognitive networks

    Get PDF
    This paper describes a low-power/low-voltage CMOS wireless interface (CMOS-WiI) at 5.7 GHz with dry electrodes for congnitive networks. The electrodes are 4 x 4 microtip arrays and acquire electroencephalogram (EEG) signals in key- points for processing. The CMOS-WiI was fabricated in a UMC 0.18 µm RF CMOS process and its total power consumption is 23mW with a voltage-supply of only 1.5 V. The carrier frequency is digitally selectable and it can be one of 16 possible values in the range 5.42–5.83 GHz, with 27.12 MHz steps. These multiple carriers allow a better spectrum allocation as well as the acquisition, processing and transmission of high-quality EEG signals from 16 electrode arrays. The microtips array was fabricated through bulk micromachining of a -type silicon substrate in a potassium hydroxide solution and avoids long subject preparations for EEG data acquisition. The reactive sputtering of iridium dioxide (IrO) on the surface of the array guarantees its biocompatibility. The fabrication process was trimmed in a way that each microtip presents solid angles of 54.7 , a width in the range 150–200 µm, a height of 100–200 µm, and a microtip interspacing of 2 µm. The microtips array coated with IrO together with the CMOS-WiI permit the remote monitoring of EEG signals from freely-moving subjects
    • …
    corecore