33 research outputs found

    An outbreak of aseptic meningitis caused by a distinct lineage of coxsackievirus B5 in China

    Get PDF
    SummaryIn 2009, an outbreak of aseptic meningitis caused by coxsackievirus B5 (CVB5) occurred in China. Epidemiological investigations of this outbreak revealed that the proportion of severe cases (14/43, 33%) was higher than in other outbreaks associated with CVB5 in China. Phylogenetic analysis of the entire VP1 sequences demonstrated that the CVB5 isolates from the severe cases form a distinct lineage belonging to genogroup E with the Shandong isolates of 2009. A substitution of serine (S) to asparagine (N) at amino acid 95 in the VP1 region may be a major virulence determinant for the virus. Our findings suggest that this new lineage of CVB5 is circulating in China. Further genetic studies are needed in order to gain a better insight into the genetic variability of CVB5 isolates and the relationship with pathogenicity

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Graphene oxide-driven interfacial coupling in laser 3D printed PEEK/PVA scaffolds for bone regeneration

    No full text
    Blending Polyetheretherketone (PEEK) with Polyvinyl alcohol (PVA) is promising to obtain a composite scaffold combining the excellent biomechanical properties of PEEK and the remarkable degradability of PVA. However, the weak interfacial bonding between nonpolar PEEK and polar PVA would result in poor mechanical properties. In this study, owing to its unique amphiphilic properties, graphene oxide (GO) was employed to enhance the interfacial bonding between PEEK and PVA in PEEK/PVA scaffolds that were fabricated by laser 3D printing. On the one hand, the large π-conjugated structure of GO formed strong π-π interactions with the benzene rings in PEEK. On the other hand, the oxygen-containing groups of GO formed strong hydrogen bonds with the hydroxyl groups of PVA. As a result, the interfacial free energy between PEEK and PVA decreased from 37.4 to 29.6 mJ/m2 according to the harmonic-mean rule, and the PVA phase in PEEK matrix became much fine and uniform, indicating a reinforced interfacial bonding. Correspondingly, the strength and modulus of PEEK/PVA scaffolds increased by 97.16% and 147.06%, respectively, for a GO loading of 1%. Furthermore, the scaffolds exhibited good hydrophilicity and degradability, and promoted cell attachment and proliferation in vitro and osteogenic differentiation and bone regeneration in vivo

    Hirsutella sinensis Treatment Shows Protective Effects on Renal Injury and Metabolic Modulation in db/db Mice

    No full text
    Hirsutella sinensis (HS) is the anamorph of the traditional Chinese medicine Cordyceps sinensis. Although the renal protective effect of HS has been reported, its effect on diabetic nephropathy (DN) remains unclear. In this study, db/db mice were used as the DN model, and the renal protective effect was evaluated after oral administration of HS for 6 and 12 weeks. Plasma, urine, and kidney samples were collected, and biochemical indicator measurements, pathological analysis, and metabolomics studies were performed. Biochemical assays showed that HS reduced the levels of fasting blood glucose (FBG), urinary albumin/creatinine ratio (ACR), and N-acetyl-beta-D-glucosaminidase (NAG) and increased the creatinine clearance (Ccr). HS alleviated glomerular and tubular glycogen accumulation and fibrosis and normalized the disordered ultrastructure of the glomerular filtration barrier. Metabolomics analysis of metabolites in the plasma, urine, and kidney indicated that HS modulated the perturbed glycolipid metabolism and amino acid turnover. HS reduced the elevated levels of metabolites involved in energy metabolism (TCA cycle, glycolysis, and pentose phosphate pathway) and nucleotide metabolism (pyrimidine metabolism and purine metabolism) in the kidneys of db/db mice. These results suggest that HS can protect against renal injury and that its efficacy involved metabolic modulation of the disturbed metabolome in db/db mice

    Transcrystalline growth of PLLA on carbon fiber grafted with nano-SiO2 towards boosting interfacial bonding in bone scaffold

    No full text
    Abstract Background The reinforcement effect of fiber-reinforced polymer composites is usually limited because of the poor interfacial interaction between fiber and polymer, though fiber reinforcement is regarded as an effective method to enhance the mechanical properties of polymer. Methods In this study, nano-SiO2 particles grafted by 3-Glycidoxypropyltrimethoxysilane (KH560) were introduced onto the surface of 3-Aminopropyltriethoxysilane (KH550) modified carbon fiber (CF) by a self-assembly strategy to improve the interfacial bonding between CF and biopolymer poly (lactic acid) (PLLA). Results The results indicated that PLLA chains preferred to anchor at the surface of nano-SiO2 particles and then formed high order crystalline structures. Subsequently, PLLA spherulites could epitaxially grow on the surface of functionalized CF, forming a transcrystalline structure at the CF/PLLA interface. Meanwhile, the nano-SiO2 particles were fixed in the transcrystalline structure, which induced a stronger mechanical locking effect between CF and PLLA matrix. The results of tensile experiments indicated that the PLLA/CF-SiO2 scaffold with a ratio of CF to SiO2 of 9:3 possessed the optimal strength and modulus of 10.11 MPa and 1.18 GPa, respectively. In addition, in vitro tests including cell adhesion and fluorescence indicated that the scaffold had no toxicity and could provide a suitable microenvironment for the growth and proliferation of cell. Conclusion In short, the PLLA/CF-SiO2 scaffold with good mechanical properties and cytocompatibility had great potential in the application of bone tissue engineering

    Hirsutella sinensis

    No full text
    corecore