44 research outputs found

    Regulatory Mechanisms of the Wnt/β-Catenin Pathway in Diabetic Cutaneous Ulcers

    Get PDF
    Skin ulcers are a serious complication of diabetes. Diabetic patients suffer from vascular lesions and complications such as peripheral neuritis, peripheral vascular lesions, and collagen abnormalities, which result in skin wounds that are refractory and often develop into chronic ulcers. The healing of skin ulcers requires an inflammatory reaction, wound proliferation, remodeling regulation, and control of stem cells. Studies investigating diabetic cutaneous ulcers have focused on cellular and molecular levels. Diabetes can cause nerve and blood vessel damage, and persistent high blood sugar levels can cause systemic multisite nerve damage based on peripheral neuropathy. The long-term hyperglycemia state enables the polyol glucose metabolism pathway to be activated, increasing the accumulation of toxic substances in the vascular injured nerve tissue cells. Sustained hyperglycemia leads to dysfunction of epithelial cells, leading to a decrease in pro-angiogenic signaling and nitric oxide production. In addition, due to impaired leukocyte function in hyperglycemia, immune function is impaired and the immune response at relevant sites is insufficient, making diabetic foot more difficult to heal. The Wnt/β-catenin pathway is a highly conserved signal transduction pathway involved in a variety of biological processes, such as cell proliferation, apoptosis, and differentiation. It is considered an important pathway involved in the healing of skin wounds. This article summarizes the mechanism of action of the Wnt/β-catenin pathway involved in the inflammatory responses to diabetic ulcers, wound proliferation, wound remodeling, and stem cells. The interactions between the Wnt signal pathway and other metabolic pathways are also discussed

    Genomic monitoring of SARS-CoV-2 uncovers an Nsp1 deletion variant that modulates type I interferon response

    Get PDF
    The SARS-CoV-2 virus, the causative agent of COVID-19, is undergoing constant mutation. Here, we utilized an integrative approach combining epidemiology, virus genome sequencing, clinical phenotyping, and experimental validation to locate mutations of clinical importance. We identified 35 recurrent variants, some of which are associated with clinical phenotypes related to severity. One variant, containing a deletion in the Nsp1-coding region (D500-532), was found in more than 20% of our sequenced samples and associates with higher RT-PCR cycle thresholds and lower serum IFN-beta levels of infected patients. Deletion variants in this locus were found in 37 countries worldwide, and viruses isolated from clinical samples or engineered by reverse genetics with related deletions in Nsp1 also induce lower IFN-beta responses in infected Calu-3 cells. Taken together, our virologic surveillance characterizes recurrent genetic diversity and identified mutations in Nsp1 of biological and clinical importance, which collectively may aid molecular diagnostics and drug design.Peer reviewe

    Climatic niche comparison across a cryptic species complex

    No full text
    According to current molecular evidence, the Chionaspis pinifoliae heterophyllae species complex has been recognized as 10 cryptic species. In this study, we construct potential distribution maps for seven cryptic species based on climatic variables. This was done to assess the main environmental factors that have contributed to the distribution map and test the degree of niche overlap across the seven cryptic species. We used MaxEnt to build the climatic niche models under climatic variables. For these models, the similarities and differences of the niches across the cryptic species were estimated. By comparing the potential distribution model of each cryptic species, our results suggested parapatric, sympatric and allopatry populations for this cryptic species complex. Our results showed high variability in niche overlap, and more often niche conservatism than niche divergence. The current species delimitation of the Chionaspis pinifoliae heterophyllae complex by molecular information and the hypothesis that the niche overlap in the sympatric population is higher than that of the allopatry population were supported based on the findings. This study will provide baseline data and a distribution range to facilitate the further control of these insects and formulate quarantine measures

    Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management

    No full text
    Cycads are an ancient group of gymnosperms that are popular as landscaping plants, though nearly all of them are threatened or endangered in the wild. The cycad aulacaspis scale (CAS), Aulacaspis yasumatsui Takagi (Hemiptera: Diaspididae), has become one of the most serious pests of cycads in recent years; however, the potential distribution range and the management approach for this pest are unclear. A potential risk map of cycad aulacaspis scale was created based on occurrence data under different climatic conditions and topology factors in this study. Furthermore, the future potential distributions of CAS were projected for the periods 2050s and 2070s under three different climate change scenarios (GFDL-CM3, HADGEM2-AO and MIROC5) described in the Special Report on Emissions Scenarios of the IPCC (Intergovernmental Panel on Climate Change). The model suggested high environmental suitability for the continents of Asia and North America, where the species has already been recorded. The potential distribution expansions or reductions were also predicted under different climate change conditions. Temperature of Driest Quarter (Bio9) was the most important factor, explaining 48.1% of the distribution of the species. The results also suggested that highly suitable habitat for CAS would exist in the study area if the mean temperature of 15–20 °C in the driest quarter and a mean temperature of 25–28 °C the wettest quarter. This research provides a theoretical reference framework for developing policy to manage and control this invasive pest

    Characterization of the complete mitochondrial genome of Eysarcoris aeneus (Heteroptera: Pentatomidae), with its phylogenetic analysis

    No full text
    In this study, the complete 16,065 bp mitochondrial genome of Eysarcoris aeneus was determined from China using next-generation sequencing technology. It consists of 13 protein-coding genes, 22 tRNAs, 2 ribosomal RNAs, and a control region. Among them, 23 genes were located on J-strand, and the other genes (nad5, nad4, nad4L, nad1, trnQ, trnC, trnY, trnF, trnH, trnP, trnL1, trnV, 12S rRNA, and 16S rRNA) were located on the N-strand. The phylogenetic tree was constructed using MrBayes method based on the 13 protein-coding genes (PCGs) showed the present species clustered within the Pentatomidae. The complete mitogenome data would be useful for further study of Pentatomoidea and Pentatomomorpha

    The Potential Global Distribution of the White Peach Scale Pseudaulacaspis pentagona (Targioni Tozzetti) under Climate Change

    No full text
    The white peach scale Pseudaulacaspis pentagona (Hemiptera: Diaspididae) is a pest that causes significant damage to more than 221 genera of host plants in more than 112 countries. P. pentagona primarily feeds on mulberry, peach, and tea, and this leads to the loosening of the epidermis of trees, which damages nutrient and water transportation in the branches, leading to branch death. P. pentagona is native to China and Japan, and has become an invasive species all over the world. However, the potential distribution of P. pentagona remains unclear. In this study, a potential distribution map of P. pentagona was developed using current and future climate information using MaxEnt. The model indicates that Asia, Europe, South America and North America are a highly suitable habitat range for this species. The MaxEnt models for the potential distribution of P. pentagona for the 2050s and 2070s suggest that in the case of no significant increase or even decrease in the highly suitable area, the suitable area increased significantly on any future climatic scenarios. The predicted area gain in the suitable habitat is 2.82 × 107 km2, including more of Asia, such as China, Japan, and Mongolia, and also including India, Vietnam, Romania, Ukraine, Poland, Hungary, Austria, The Czech Republic, Italy, and Germany in Europe, which shows an increase of 24.5% over the current habitat on RCP8.5 emission scenarios for the 2070s. With the warming of the climate, significant expansions are predicted in the suitable area, especially in Europe and East Asia. Under RCP8.5 for the 2050s, the model-predicted that the area of suitable habitat in China and the Korean Peninsula gains an increase of 18.8% over the current suitable habitat area. Under other climate scenarios, RCP8.5-2070s, the suitable areas were the largest, compared to projection for the current climate scenario (ca. 24.1% increase) which increased to 7.89 × 106 km2. In Europe, under RCP8.5 for the 2070s, the highly suitable areas were the largest, compared to the projection for the current climate scenario (ca. 46.2% increase), which increased to 8.64 × 105 km2, the area of suitable habitat suitability increased to 4.99 × 106 km2 (29.2% increase of the current condition). Potential increases or decreases in distribution ranges were modeled under future climatic scenarios. This study suggests that the most important factor that influenced current distribution of this pest was temperature, and BIO3 (isothermality) was the most important factor that contributed to 48.6% of the potential distribution map. Given the rapid spread of P. pentagona and the serious risk this species poses to local ecosystems, warning modelling and practical strategies to prevent the establishment and expansion of this species should be sought. This distribution map will help governments to identify areas that are suitable for current and future infestations, and to optimize pest management strategies

    Modeling the Potential Global Distribution of Phenacoccus madeirensis Green under Various Climate Change Scenarios

    No full text
    The Madeira mealybug, Phenacoccus madeirensis Green, is a serious invasive pest that does significant damage to more than 120 genera of host plants from 51 families in more than 81 countries. However, the potential distribution range of this pest is unclear, which could hamper control and eradication efforts. In the current study, MaxEnt models were developed to forecast the current and future distribution of the Madeira mealybug around the world. Moreover, the future potential distribution of this invasive species was projected for the 2050s and 2070s under three different climate change scenarios (HADGEM2-AO, GFDL-CM3, and MIROC5) and two representative concentration pathways (RCP-2.6 and RCP-8.5). The final model indicates that the Madeira mealybug has a highly suitable range for the continents of Asia, Europe, and Africa, as well as South America and North America, where this species has already been recorded. Potential expansions or reductions in distribution were also simulated under different future climatic conditions. Our study also suggested that the mean temperature of the driest quarter (Bio9) was the most important factor and explained 46.9% of the distribution model. The distribution model from the current and future predictions can enhance the strategic planning of agricultural and forestry organization by identifying regions that will need to develop integrated pest management programs to manage Madeira mealybug, especially for some highly suitable areas, such as South Asia and Europe. Moreover, the results of this research will help governments to optimize investment in the control and management of the Madeira mealybug by identifying regions that are or will become suitable for infestations

    The complete mitochondrial genome of Menida violacea (Hemiptera: Pentatomidae) and its phylogenetic implication

    No full text
    In this paper, we sequenced the complete mitochondrial genome of Menida violacea. It was 15,787 bp in length, with a base composition of 41.83% A, 33.43% T, 13.82% C, and 10.93% G. It contained 37 typical mitochondrial genes (13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region). Two kinds of the initiation codon and three kinds of termination codon were employed in the 13 PCGs. Phylogenetic analysis implied that M. violacea belongs to the family Pentatomidae, and each family in Pentatomoidea formed a monophyletic cluster with a high degree of bootstrap support

    The complete mitochondrial genome of Zicrona caerulea (Linnaeus) (Hemiptera: Pentatomidae: Asopinae) and its phylogenetic implications

    No full text
    Zhao, Qing, Cassis, Gerasimos, Zhao, Ling, He, Yifan, Zhang, Hufang, Wei, Jiufeng (2020): The complete mitochondrial genome of Zicrona caerulea (Linnaeus) (Hemiptera: Pentatomidae: Asopinae) and its phylogenetic implications. Zootaxa 4747 (3): 547-561, DOI: 10.11646/zootaxa.4747.3.
    corecore