28 research outputs found

    Composition, Structure and Functional Properties of Protein Concentrates and Isolates Produced from Walnut (Juglans regia L.)

    Get PDF
    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H0 of WPC was significantly higher (p < 0.05) than those of DFWF and WPI, whilst WPI had a higher H0 compared to DFWF. The secondary structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients

    Cellular Retinol-Binding Protein Type I (CRBP-I) Regulates Adipogenesis â–ż

    No full text
    Adipogenesis is governed by a well-documented cascade of transcription factors. However, less is known about non-transcription factors that govern early stages of adipogenesis. Here we show that cellular retinol-binding protein type I (CRBP-I), a small cytosolic binding protein for retinol and retinaldehyde, is specifically restricted to preadipocytes in white adipose tissue. The absence of CRBP-I in mice (CRBP-I-KO mice) leads to increased adiposity. Despite increased adiposity, CRBP-I-KO mice remain more glucose tolerant and insulin sensitive during high-fat-diet feeding. 3T3-L1 cells deficient in CRBP-I or mouse embryonic fibroblasts derived from CRBP-I-KO mice had increased adipocyte differentiation and triglyceride (TG) accumulation. This was due to increased expression and activity of PPARÎł, while other transcription factor pathways in early and late differentiation remained unchanged. Conversely, the overexpression of CRBP-I in 3T3-L1 cells results in decreased TG accumulation. In conclusion, CRBP-I is a cytosolic protein specifically expressed in preadipocytes that regulates adipocyte differentiation in part by affecting PPARÎł activity
    corecore