17 research outputs found

    Protective Effects of Combined Utilization of Quercetin and Florfenicol on Acute Hepatopancreatic Necrosis Syndrome Infected Litopenaeus vannamei

    No full text
    This study aimed to determine the immunity, survival rate, and disease resistance of Litopenaeus vannamei treated using quercetin and florfenicol alone or in combination, after infection with acute hepatopancreatic necrosis syndrome caused by Vibrio parahaemolyticus (VPAHPND). After infection with VPAHPND, different types of feed were given to the shrimp for 5 days, including a control diet (drug-free), florfenicol only diet (15 mg/kg), quercetin only diet (400 mg/kg), a low-dose florfenicol/quercetin combined diet (200 mg/kg quercetin + 7.0 mg/kg florfenicol), a moderate-dose florfenicol/quercetin combined diet (400 mg/kg quercetin + 15 mg/kg florfenicol), and a high-dose florfenicol/quercetin combined diet (800 mg/kg quercetin + 30 mg/kg florfenicol). The cumulative mortality of shrimp was significantly reduced in the drug combination groups compared with either drug used alone (p < 0.05). The density of Vibrio was significantly lower and the immune parameters were significantly increased in the drug combination groups compared with either drug used alone (p < 0.05). Moreover, in the drug combination groups, the hepatopancreas tubules showed better integrity and structure compared with those when either drug was used alone. Therefore, compared with single drug treatment, the florfenicol and quercetin combination enhanced disease resistance, survival, and immune activity of VPAHPND-infected shrimp. When the combination treatment is used, the dosage of florfenicol can be reduced and a better therapeutic effect is obtained

    mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases

    No full text
    In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine’s potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field

    Effects of Dietary Tannic Acid on Growth, Digestion, Immunity and Resistance to Ammonia Stress, and Intestinal Microbial Community in Pacific White Shrimp (Litopenaeus vannamei)

    No full text
    Tannic acid (TA) has great potential as a new feed additive. In this study, we investigated the effects of dietary TA on growth, digestion, nonspecific immunity, and resistance to ammonia stress and intestinal microbiota in Litopenaeus vannamei. The shrimp were fed diets containing different levels of TA: 0 mg/kg (TA-0), 200 mg/kg (TA-200), 400 mg/kg (TA-400), and 800 mg/kg (TA-800) for 56 days, followed by acute ammonia stress for 48 h. The results showed that dietary TA increased the survival rate of the TA-800 group. Dietary TA could improve the morphology of the hepatopancreas and intestinal tissues. After feeding different levels of TA for 56 days, the activities of amylase (AMS) and trypsin (Tryp) were increased, but the activity of lipase (LPS) was decreased. The activities of T-AOC, SOD, and PPO were higher in the hepatopancreas of the three TA treatment groups (p < 0.05). When shrimp were exposed to ammonia stress for 48 h, the activity of immune enzymes (LZM, T-AOC and SOD) and the expression levels of immune genes (LZM, proPO and Cu/Zn-SOD) were higher in the three TA treatment groups (p < 0.05). Furthermore, dietary TA also changed the composition of intestinal microflora by increasing the abundance of Planctomycetes, but decreasing the abundance of Bacteroides and Proteobacteria. The abundance of Rhodopirellula, Ruegeria, and Rhodobacter were higher, but that of Paracoccus, Algoriphagus, Cellvibrio, Flavobacteriaceae, and Bacteroides were lower in response to dietary TA. These results revealed that dietary TA had a positive effect on growth and intestinal microbial composition and enhanced the immune response to ammonia stress in shrimp. Therefore, TA can be a potential natural alternative antibiotic substitute for feed additives in shrimp, and the appropriate supplemental dosage is 400–800 mg/kg in the diet

    Defining Specific Cell States of MPTP-Induced Parkinson’s Disease by Single-Nucleus RNA Sequencing

    No full text
    Parkinson’s disease (PD) is a neurodegenerative disease with an impairment of movement execution that is related to age and genetic and environmental factors. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin widely used to induce PD models, but the effect of MPTP on the cells and genes of PD has not been fully elucidated. By single-nucleus RNA sequencing, we uncovered the PD-specific cells and revealed the changes in their cellular states, including astrocytosis and endothelial cells’ absence, as well as a cluster of medium spiny neuron cells unique to PD. Furthermore, trajectory analysis of astrocyte and endothelial cell populations predicted candidate target gene sets that might be associated with PD. Notably, the detailed regulatory roles of astrocyte-specific transcription factors Dbx2 and Sox13 in PD were revealed in our work. Finally, we characterized the cell–cell communications of PD-specific cells and found that the overall communication strength was enhanced in PD compared with a matched control, especially the signaling pathways of NRXN and NEGR. Our work provides an overview of the changes in cellular states of the MPTP-induced mouse brain

    Development of a novel monoclonal antibody-based competitive ELISA for antibody detection against bovine leukemia virus.

    Full text link
    peer reviewedInfection with bovine leukemia virus (BLV) leads to enzootic bovine leukosis, the most prevalent neoplastic disease in cattle. Due to the lack of commercially available vaccines, reliable eradication of the disease can be achieved through the testing and elimination of BLV antibody-positive animals. In this study, we developed a novel competitive ELISA (cELISA) to detect antibodies against BLV capsid protein p24. Recombinant p24 protein expressed by Escherichia coli, in combination with the monoclonal antibody 2G11 exhibiting exceptional performance, was used for the establishment of the cELISA. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.85 % and 98.13 %, respectively. Furthermore, the established cELISA was specific for detecting BLV-specific antibodies, without cross-reactivity to antisera for six other bovine viruses. Significantly, experimental infection of cattle and sheep with BLV revealed that the cELISA accurately monitors seroconversion. In a performance evaluation, the established cELISA displayed a high agreement with Western blotting and the commercial BLV gp51 cELISA kit in the detection of 242 clinical samples, respectively. In conclusion, the novel p24 cELISA exhibited the potential to be a reliable and efficient diagnostic tool for BLV serological detection with a broad application prospect

    Atom-Thin SnS<sub>2–<i>x</i></sub>Se<sub><i>x</i></sub> with Adjustable Compositions by Direct Liquid Exfoliation from Single Crystals

    No full text
    Two-dimensional (2D) chalcogenide materials are fundamentally and technologically fascinating for their suitable band gap energy and carrier type relevant to their adjustable composition, structure, and dimensionality. Here, we demonstrate the exfoliation of single-crystal SnS<sub>2–<i>x</i></sub>Se<sub><i>x</i></sub> (SSS) with S/Se vacancies into an atom-thin layer by simple sonication in ethanol without additive. The introduction of vacancies at the S/Se site, the conflicting atomic radius of sulfur in selenium layers, and easy incorporation with an ethanol molecule lead to high ion accessibility; therefore, atom-thin SSS flakes can be effectively prepared by exfoliating the single crystal <i>via</i> sonication. The <i>in situ</i> pyrolysis of such materials can further adjust their compositions, representing tunable activation energy, band gap, and also tunable response to analytes of such materials. As the most basic and crucial step of the 2D material field, the successful synthesis of an uncontaminated and atom-thin sample will further push ahead the large-scale applications of 2D materials, including, but not limited to, electronics, sensing, catalysis, and energy storage fields
    corecore