7 research outputs found

    Physical mapping of Bph3, a brown planthopper resistance locus in rice

    Get PDF
    Resistance to brown planthopper (BPH), a destructive phloem feeding insect pest, is an important objective in rice breeding programs in Thailand. The broad-spectrum resistance gene Bph3 is one of the major BPH resistance genes identified so far in cultivated rice and has been widely used in rice improvement programs. This resistance gene has been identified and mapped on the short arm of chromosome 6. In this study, physical mapping of Bph3 was performed using a BC3F3 population derived from a cross between Rathu Heenati and KDML105. Recombinant BC3F3 individuals with the Bph3 genotype were determined by phenotypic evaluation using modified mass tiller screening at the vegetative stage of rice plants. The recombination events surrounding the Bph3 locus were used to identify the co-segregate markers. According to the genome sequence of Nipponbare, the Bph3 locus was finally localized approximately in a 190 kb interval flanked by markers RM19291 and RM8072, which contain twenty-two putative genes. Additional phenotypic experiment revealed that the resistance in Rathu Heenati was decreased by increasing nitrogen content in rice plants through remobilization of nitrogen. This phenomenon should be helpful for identifying the Bph3 gene

    Available cloned genes and markers for genetic improvement of biotic stress resistance in rice

    Get PDF
    Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production

    Available cloned genes and markers for genetic improvement of biotic stress resistance in rice

    Get PDF
    Biotic stress is one of the major threats to stable rice production. Climate change affects the shifting of pest outbreaks in time and space. Genetic improvement of biotic stress resistance in rice is a cost-effective and environment-friendly way to control diseases and pests compared to other methods such as chemical spraying. Fast deployment of the available and suitable genes/alleles in local elite varieties through marker-assisted selection (MAS) is crucial for stable high-yield rice production. In this review, we focused on consolidating all the available cloned genes/alleles conferring resistance against rice pathogens (virus, bacteria, and fungus) and insect pests, the corresponding donor materials, and the DNA markers linked to the identified genes. To date, 48 genes (independent loci) have been cloned for only major biotic stresses: seven genes for brown planthopper (BPH), 23 for blast, 13 for bacterial blight, and five for viruses. Physical locations of the 48 genes were graphically mapped on the 12 rice chromosomes so that breeders can easily find the locations of the target genes and distances among all the biotic stress resistance genes and any other target trait genes. For efficient use of the cloned genes, we collected all the publically available DNA markers (~500 markers) linked to the identified genes. In case of no available cloned genes yet for the other biotic stresses, we provided brief information such as donor germplasm, quantitative trait loci (QTLs), and the related papers. All the information described in this review can contribute to the fast genetic improvement of biotic stress resistance in rice for stable high-yield rice production

    Farmer-participatory evaluation of mechanized dry direct-seeding technology for rice in northeastern Thailand

    No full text
    Rice technologies that are designed to reduce risks due to climate variations, improve productivity, or overcome labor scarcity are important in tropical Asia. The objective of this study was to evaluate mechanized options for dry direct-seeding of rice in terms of the productivity and production costs in rainfed lowlands. In a series of on-farm research trials over 3 years in Ubon Ratchathani province, Thailand, we compared seeding by seed drills mounted on two-wheel tractors with manual broadcast seeding. Demonstration trials of seed drills and site-specific nutrient management in 2017 with 11 of 26 participating farmers produced 2.50 t ha−1 of grain yield, but unexpected heavy storms forced the other 15 farmers to switch from dry to wet direct-seeding or manual transplanting. The seed drills produced 32% higher grain yield than manual broadcast seeding (3.3 vs. 2.5 t ha−1) in 2014, and 14–24% higher yield (3.3–3.6 vs. 2.9 t ha−1) in 2015. Mechanized seeding enabled seeding rate reduction by 50% in 2014 and by 52–61% in 2015, resulting in lower production costs than with manual seeding. Our results suggest that mechanized dry direct-seeding of rice with improved nutrient management can enhance farmer livelihoods in rainfed environments in northeastern Thailand. This approach can significantly reduce production costs compared with manual transplanting, while maintaining or increasing productivity compared with conventional manual broadcast seeding. Abbreviations: THB: Thai Bah
    corecore