29 research outputs found

    Proof of principle for a high sensitivity search for the electric dipole moment of the electron using the metastable a(1)[^3\Sigma^+] state of PbO

    Full text link
    The metastable a(1)[^3\Sigma^+] state of PbO has been suggested as a suitable system in which to search for the electric dipole moment (EDM) of the electron. We report here the development of experimental techniques allowing high-sensitivity measurements of Zeeman and Stark effects in this system, similar to those required for an EDM search. We observe Zeeman quantum beats in fluorescence from a vapor cell, with shot-noise limited extraction of the quantum beat frequencies, high counting rates, and long coherence times. We argue that improvement in sensitvity to the electron EDM by at least two orders of magnitude appears possible using these techniques.Comment: 5 pages, 3 figure

    Uniform nomenclature for the mitochondrial contact site and cristae organizing system

    Get PDF
    The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex "mitochondrial contact site and cristae organizing system" and its subunits Mic10 to Mic60

    Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    Get PDF
    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor

    Does cytoskeleton 'Akt' in apoptosis?

    Get PDF
    n/

    Does cytoskeleton ‘Akt’ in apoptosis?

    No full text
    corecore