326 research outputs found

    The role of Volatile Anesthetics in Cardioprotection: a systematic review.

    Get PDF
    This review evaluates the mechanism of volatile anesthetics as cardioprotective agents in both clinical and laboratory research and furthermore assesses possible cardiac side effects upon usage. Cardiac as well as non-cardiac surgery may evoke perioperative adverse events including: ischemia, diverse arrhythmias and reperfusion injury. As volatile anesthetics have cardiovascular effects that can lead to hypotension, clinicians may choose to administer alternative anesthetics to patients with coronary artery disease, particularly if the patient has severe preoperative ischemia or cardiovascular instability. Increasing preclinical evidence demonstrated that administration of inhaled anesthetics - before and during surgery - reduces the degree of ischemia and reperfusion injury to the heart. Recently, this preclinical data has been implemented clinically, and beneficial effects have been found in some studies of patients undergoing coronary artery bypass graft surgery. Administration of volatile anesthetic gases was protective for patients undergoing cardiac surgery through manipulation of the potassium ATP (KATP) channel, mitochondrial permeability transition pore (mPTP), reactive oxygen species (ROS) production, as well as through cytoprotective Akt and extracellular-signal kinases (ERK) pathways. However, as not all studies have demonstrated improved outcomes, the risks for undesirable hemodynamic effects must be weighed against the possible benefits of using volatile anesthetics as a means to provide cardiac protection in patients with coronary artery disease who are undergoing surgery

    Regulatory T Cell in Stroke: A New Paradigm for Immune Regulation

    Get PDF
    Stroke is a common, debilitating trauma that has an incompletely elucidated pathophysiology and lacks an effective therapy. FoxP3+CD25+CD4+ regulatory T cells (Tregs) suppress a variety of normal physiological and pathological immune responses via several pathways, such as inhibitory cytokine secretion, direct cytolysis induction, and antigen-presenting cell functional modulation. FoxP3+CD25+CD4+ Tregs are involved in a variety of central nervous system diseases and injuries, including axonal injury, neurodegenerative diseases, and stroke. Specifically, FoxP3+CD25+CD4+ Tregs exert neuroprotective effects in acute experimental stroke models. These beneficial effects, however, are difficult to elucidate. In this review, we summarized evidence of FoxP3+CD25+CD4+ Tregs as potentially important immunomodulators in stroke pathogenesis and highlight further investigations for possible immunotherapeutic strategies by modulating the quantity and/or functional effects of FoxP3+CD25+CD4+ Tregs in stroke patients

    Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic transformation (HT) can be a devastating complication of ischemic stroke. Hyperbaric oxygen preconditioning (HBO-PC) has been shown to improve blood-brain barrier (BBB) permeability in stroke models. The purpose of this study is to examine whether HBO-PC attenuates HT after focal cerebral ischemia, and to investigate whether the mechanism of HBO-PC against HT includes up-regulation of antioxidants in hyperglycemic rats.</p> <p>Methods</p> <p>Male Sprague-Dawley rats (280-320 g) were divided into the following groups: sham, middle cerebral artery occlusion (MCAO) for 2 h, and MCAO treated with HBO-PC. HBO-PC was conducted giving 100% oxygen at 2.5 atm absolute (ATA), for 1 h at every 24 h interval for 5 days. At 24 h after the last session of HBO-PC, rats received an injection of 50% glucose (6 ml/kg intraperitoneally) and were subjected to MCAO 15 min later. At 24 h after MCAO, neurological behavior tests, infarct volume, blood-brain barrier permeability, and hemoglobin content were measured to evaluate the effect of HBO-PC. Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was evaluated at multiple time-points before and after MCAO.</p> <p>Results</p> <p>HBO-PC improved neurological behavior test, and reduced infarction volume, HT and Evans blue extravasation in the ipsilateral hemisphere at 24 h after MCAO. Western blot analysis failed to demonstrate up-regulation of Nrf2 in HBO-PC group before and after MCAO. Paradoxically, HBO-PC decreased HO-1 expression at 24 h after MCAO, as compared with htMCAO group.</p> <p>Conclusions</p> <p>HBO-PC improved neurological deficits, infarction volume, BBB disruption, and HT after focal cerebral ischemia. However, its mechanism against focal cerebral ischemia and HT may not include activation of Nrf2 and subsequent HO-1 expression.</p

    Hydrogen is neuroprotective against surgically induced brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurosurgical operations cause unavoidable damage to healthy brain tissues. Direct surgical injury as well as surgically induced oxidative stress contributes to the subsequent formation of brain edema. Therefore, we tested the neuroprotective effects of hydrogen (H<sub>2</sub>) in an established surgical brain injury (SBI) model in rats.</p> <p>Materials and methods</p> <p>Adult male Sprague - Dawley rats (weight 300-350g) were divided into three groups to serve as sham operated, SBI without treatment, and SBI treated with H<sub>2 </sub>(2.9%). Brain water content, myeloperoxidase (MPO) assay, lipid peroxidation (LPO), and neurological function were measured at 24 hrs after SBI.</p> <p>Results</p> <p>SBI resulted in localized brain edema (p = < 0.001). Hydrogen (2.9%) administered concurrently with surgery significantly decreased the formation of cerebral edema (p = 0.028) and improved neurobehavioral score (p = 0.022). However, hydrogen treatment failed to reduce oxidative stress (LPO assay) or inflammation (MPO assay) in brain tissues.</p> <p>Conclusions</p> <p>Hydrogen appears to be promising as an effective, yet inexpensive way to reduce cerebral edema caused by surgical procedures. Hydrogen has the potential to improve clinical outcome, decrease hospital stay, and reduce overall cost to patients and the health care system.</p

    Crotalus atrox venom preconditioning increases plasma fibrinogen and reduces perioperative hemorrhage in a rat model of surgical brain injury.

    Get PDF
    Perioperative bleeding is a potentially devastating complication in neurosurgical patients, and plasma fibrinogen concentration has been identified as a potential modifiable risk factor for perioperative bleeding. The aim of this study was to evaluate preconditioning with Crotalus atrox venom (Cv-PC) as potential preventive therapy for reducing perioperative hemorrhage in the rodent model of surgical brain injury (SBI). C. atrox venom contains snake venom metalloproteinases that cleave fibrinogen into fibrin split products without inducing clotting. Separately, fibrinogen split products induce fibrinogen production, thereby elevating plasma fibrinogen levels. Thus, the hypothesis was that preconditioning with C. atrox venom will produce fibrinogen spilt products, thereby upregulating fibrinogen levels, ultimately improving perioperative hemostasis during SBI. We observed that Cv-PC SBI animals had significantly reduced intraoperative hemorrhage and postoperative hematoma volumes compared to those of vehicle preconditioned SBI animals. Cv-PC animals were also found to have higher levels of plasma fibrinogen at the time of surgery, with unchanged prothrombin time. Cv-PC studies with fractions of C. atrox venom suggest that snake venom metalloproteinases are largely responsible for the improved hemostasis by Cv-PC. Our findings indicate that Cv-PC increases plasma fibrinogen levels and may provide a promising therapy for reducing perioperative hemorrhage in elective surgeries

    Imaging of brain function based on the analysis of functional connectivity - imaging analysis of brain function by fMRI after acupuncture at LR3 in healthy individuals

    Get PDF
    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint.Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method.Results: The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint.Conclusion: Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.Keywords: acupuncture, Taichong(LR3), functional magnetic resonance imaging (fMRI), functional connectivit

    Comment on "Carnot efficiency at divergent power output" (and additional discussion)

    Full text link
    In a recent Letter [EPL, 118 (2017) 40003], Polettini and Esposito claimed that it is theoretically possible for a thermodynamic machine to achieve Carnot efficiency at divergent power output through the use of infinitely-fast processes. It appears however that this assertion is misleading as it is not supported by their derivations as demonstrated below. In this Comment, we first show that there is a confusion regarding the notion of optimal efficiency. We then analyze the quantum dot engine described in Ref. [EPL, 118 (2017) 40003] and demonstrate that Carnot efficiency is recovered only for vanishing output power. Moreover, a discussion on the use of infinite thermodynamical forces to reach Carnot efficiency is also presented in the appendix.Comment: Modified version compared to the manuscript submitted to EP

    Male and Female Mice Exhibit Divergent Responses of the Cortical Vasculature to Traumatic Brain Injury

    Get PDF
    Traumatic brain injuries (TBI) occur in 1.7 million people each year in the USA. Little is known about how the cerebrovasculature is altered after TBI. We previously reported that TBI elicits acute decrements in cerebral vessels near the injury site in rats followed by revascularization over the subsequent 2 weeks. Sexual dimorphism of the brain is well documented and different hormonal levels in males and females differentially modify the recovery process after injury. However, the effects of biological sex on the temporal evolution of revascularization following TBI are understudied. Using a model of controlled cortical impact in male and female mice, we set out to determine if the injury and the repair process are affected by sex
    corecore