9 research outputs found

    Overnight switch from ropinirole to transdermal rotigotine patch in patients with Parkinson disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recent trial involving predominantly Caucasian subjects with Parkinson Disease (PD) showed switching overnight from an oral dopaminergic agonist to the rotigotine patch was well tolerated without loss of efficacy. However, no such data have been generated for Korean patients.</p> <p>Methods</p> <p>This open-label multicenter trial investigated PD patients whose symptoms were not satisfactorily controlled by ropinirole, at a total daily dose of 3 mg to 12 mg, taken as monotherapy or as an adjunct to levodopa. Switching treatment from oral ropinirole to transdermal rotigotine was carried out overnight, with a dosage ratio of 1.5:1. After a 28-day treatment period, the safety and tolerability of switching was evaluated. Due to the exploratory nature of this trial, the effects of rotigotine on motor and nonmotor symptoms of PD were analyzed in a descriptive manner.</p> <p>Results</p> <p>Of the 116 subjects who received at least one treatment, 99 (85%) completed the 28-day trial period. Dose adjustments were required for 11 subjects who completed the treatment period. A total of 76 treatment-emergent adverse events (AEs) occurred in 45 subjects. No subject experienced a serious AE. Thirteen subjects discontinued rotigotine prematurely due to AEs. Efficacy results suggested improvements in both motor and nonmotor symptoms and quality of life after switching. Fifty-two subjects (46%) agreed that they preferred using the patch over oral medications, while 31 (28%) disagreed.</p> <p>Conclusions</p> <p>Switching treatment overnight from oral ropinirole to transdermal rotigotine patch, using a dosage ratio of 1.5:1, was well tolerated in Korean patients with no loss of efficacy.</p> <p>Trial registration</p> <p>This trial is registered with the ClincalTrails.gov Registry (<a href="http://www.clinicaltrials.gov/ct2/show/NCT00593606">NCT00593606</a>).</p

    AUV-Based Multi-View Scanning Method for 3-D Reconstruction of Underwater Object Using Forward Scan Sonar

    No full text
    In this study, we propose an autonomous underwater vehicle (AUV)-based multi-directional scanning method of underwater objects using forward scan sonar (FSS). Recently, a method was developed that can generate a 3-D point cloud of an underwater object using FSS. However, the data comprised sparse and noisy characteristics that made it difficult for 3-D recognition. Another limitation was the absence of back and side surface information of an object. These limitations degraded the results of the 3-D reconstruction. We propose a multi-directional scanning strategy to improve the 3-D point cloud and reconstruction results where the AUV determines the direction of the next scan by analyzing the 3-D data of the object until the scanning is complete. This enables adaptive scanning based on the shape of the target object while reducing the amount of scanning time. Based on the scanning strategy, a polygonal approximation method for real-time 3-D reconstruction is developed to process scanned data groups of the 3-D point cloud. This process can efficiently handle multiple 3-D point cloud data for real-time operation and reduce its uncertainty. To verify the performance of our proposed method, simulations were performed with various objects and conditions. In addition, experiments were conducted in an indoor water tank, and the results were compared with the simulation results. Field experiments were conducted to verify the proposed method for more diverse environments and objects.11Nsciescopu

    Sensor fusion of two sonar devices for underwater 3D mapping with an AUV

    No full text
    We present herein a three-dimensional (3D) mapping method in one-way rectilinear scanning with an autonomous underwater vehicle (AUV) equipped with a forward looking sonar (FLS) and a profiling sonar (PS). Three-dimensional reconstruction using sonar with a finite beam width is an ill-posed problem, and additional constraints also need to be considered. Our approach involves an additional sonar and fuse acoustic measurements provided by the two sonar sensors. The FLS has a high resolution in the horizontal scan but has a uncertainty in the vertical scan. Meanwhile, the PS provides a reliable vertical profile, but its beam width is extremely narrow. An initial map is generated by the FLS and refined by combining the PS vertical scan data. To demonstrate the validity and effectiveness of the proposed method, we conducted tests in a water tank and also at sea. Finally, we presented the results of the proposed method gathered by an AUV in the tests.11Nsciescopu

    Microfluidics-Assisted Synthesis of Hierarchical Cu2O Nanocrystal as C2-Selective CO2 Reduction Electrocatalyst

    No full text
    Ā© 2022 Wiley-VCH GmbH.Copper-based catalysts have attracted enormous attention due to their high selectivity for C2+ products during the electrochemical reduction of CO2 (CO2RR). In particular, grain boundaries on the catalysts contribute to the generation of various Cu coordination environments, which have been found essential for Cā€”C coupling. However, smooth-surfaced Cu2O nanocrystals generally lack the ability for the surface reorganization to form multiple grain boundaries and desired Cu undercoordination sites. Flow chemistry armed with the unparalleled ability to mix reaction mixture can achieve a very high concentration of unstable reaction intermediates, which in turn are used up rapidly to lead to kinetics-driven nanocrystal growth. Herein, the synthesis of a unique hierarchical structure of Cu2O with numerous steps (h-Cu2O ONS) via flow chemistry-assisted modulation of nanocrystal growth kinetics is reported. The surface of h-Cu2O ONS underwent rapid surface reconstruction under CO2RR conditions to exhibit multiple heterointerfaces between Cu2O and Cu phases, setting the preferable condition to facilitate Cā€”C bond formation. Notably, the h-Cu2O ONS obtained the increased C2H4 Faradaic efficiency from 31.9% to 43.5% during electrocatalysis concurrent with the morphological reorganization, showing the role of the stepped surface. Also, the h-Cu2O ONS demonstrated a 3.8-fold higher ethylene production rate as compared to the Cu2O nanocube.N
    corecore