80 research outputs found

    Rapid Assessment of Intertidal Wetland Sediments

    Get PDF
    Urbanization of coastal areas poses a severe threat to ecologically valuable intertidal wetlands. This paper presents a pragmatic approach called Rapid Assessment for Intertidal Wetland Sediments (RAITWS) for evaluating the sediment quality of intertidal wetlands. RAITWS involves construction of reference groups, selection of a subset of environmental variables, matching of test sites to reference groups, prediction of the benthic fauna community structure (e. g. of macroinvertebrates) at test sites, evaluation of the Observation to Expectation ratio (O/E ratio), quantification of environmental variables with series of dynamic numerical models, and interpretation of the O/E findings. The proposed method extends the existing rapid biological assessment approach from static to dynamic applications. In particular, RAITWS provides a fast method of assessing intertidal wetland sites which are undergoing ecological change due to nearby coastal development.Environmental SciencesSCI(E)EI0ARTICLE5574-5852

    Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2

    Get PDF
    The ends of linear chromosomes are capped by protein–DNA complexes termed telomeres. Telomere repeat binding factors 1 and 2 (TRF1 and TRF2) bind specifically to duplex telomeric DNA and are critical components of functional telomeres. Consequences of telomere dysfunction include genomic instability, cellular apoptosis or senescence and organismal aging. Mild oxidative stress induces increased erosion and loss of telomeric DNA in human fibroblasts. We performed binding assays to determine whether oxidative DNA damage in telomeric DNA alters the binding activity of TRF1 and TRF2 proteins. Here, we report that a single 8-oxo-guanine lesion in a defined telomeric substrate reduced the percentage of bound TRF1 and TRF2 proteins by at least 50%, compared with undamaged telomeric DNA. More dramatic effects on TRF1 and TRF2 binding were observed with multiple 8-oxo-guanine lesions in the tandem telomeric repeats. Binding was likewise disrupted when certain intermediates of base excision repair were present within the telomeric tract, namely abasic sites or single nucleotide gaps. These studies indicate that oxidative DNA damage may exert deleterious effects on telomeres by disrupting the association of telomere-maintenance proteins TRF1 and TRF2

    En masse nascent transcription analysis to elucidate regulatory transcription factors

    Get PDF
    Despite exhaustively informing about steady-state mRNA abundance, DNA microarrays have been used with limited success to identify regulatory transcription factors (TFs). The main limitation of this approach is that altered mRNA stability also strongly governs the patterns of expressed genes. Here, we used nuclear run-on assays and microarrays to systematically interrogate changes in nascent transcription in cells treated with the topoisomerase inhibitor camptothecin (CPT). Analysis of the promoters of coordinately transcribed genes after CPT treatment suggested the involvement of TFs c-Myb and Rfx1. The predicted CPT-dependent associations were subsequently confirmed by chromatin immunoprecipitation assays. Importantly, after RNAi-mediated knockdown of each TF, the CPT-elicited induction of c-Myb- and/or Rfx1-regulated mRNAs was diminished and the overall cellular response was impaired. The strategies described here permit the successful identification of the TFs responsible for implementing adaptive gene expression programs in response to cellular stimulation

    Coordinate regulation of GATA3 and CD4+ T-helper 2 (TH2) cytokine gene expression by the RNA-binding protein HuR [abstract]

    Get PDF
    Asthma and other allergic inflammation diseases are major contributors to hospitalizations and deaths worldwide. These diseases are the result of over reactive immune responses initiating pro inflammatory mediators. These CD4+ T helper type 2 (Th2) mediated diseases are driven by the transcription factor GATA3 as well as the cytokines IL-4 and IL-13. HuR, an RNA binding protein (RBP), has been shown to posttranscriptionally regulate many early response genes, including these critical allergy mediators

    Cell-Type Independent MYC Target Genes Reveal a Primordial Signature Involved in Biomass Accumulation

    Get PDF
    The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP), global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs). We further document that a Myc core signature (MCS) set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells

    Erythroid-Specific Transcriptional Changes in PBMCs from Pulmonary Hypertension Patients

    Get PDF
    Gene expression profiling of peripheral blood mononuclear cells (PBMCs) is a powerful tool for the identification of surrogate markers involved in disease processes. The hypothesis tested in this study was that chronic exposure of PBMCs to a hypertensive environment in remodeled pulmonary vessels would be reflected by specific transcriptional changes in these cells.The transcript profiles of PBMCs from 30 idiopathic pulmonary arterial hypertension patients (IPAH), 19 patients with systemic sclerosis without pulmonary hypertension (SSc), 42 scleroderma-associated pulmonary arterial hypertensio patients (SSc-PAH), and 8 patients with SSc complicated by interstitial lung disease and pulmonary hypertension (SSc-PH-ILD) were compared to the gene expression profiles of PBMCs from 41 healthy individuals. Multiple gene expression signatures were identified which could distinguish various disease groups from controls. One of these signatures, specific for erythrocyte maturation, is enriched specifically in patients with PH. This association was validated in multiple published datasets. The erythropoiesis signature was strongly correlated with hemodynamic measures of increasing disease severity in IPAH patients. No significant correlation of the same type was noted for SSc-PAH patients, this despite a clear signature enrichment within this group overall. These findings suggest an association of the erythropoiesis signature in PBMCs from patients with PH with a variable presentation among different subtypes of disease.In PH, the expansion of immature red blood cell precursors may constitute a response to the increasingly hypoxic conditions prevalent in this syndrome. A correlation of this erythrocyte signature with more severe hypertension cases may provide an important biomarker of disease progression

    Bathymetry of the Pacific Plate and its Implications for Thermal Evolution of Lithosphere and Mantle Dynamics

    Get PDF
    1 Abstract. A long standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half-space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small scale convection (SSC) or some other mechanisms? In this study, we analyzed the age- and geographical dependences of ocean depth for the Pacific Plate, and we removed the effects of sediments, seamounts and large igneous provinces (LIP), using recently available datasets of high-resolution bathymetry, sediments, seamounts and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ~300 m for all ages. The ocean depth for the Pacific Plate with seamounts, LIPs, the Hawaiian swell and South Pacific super-swell excluded can be fit well with a HSC model till ~80-85 Ma and a plate model for older seafloor, particularly, with the HSC-Plate depth-age relation recently developed by Hillier and Watts [2005] with an entirely different approach for the North Pacific Ocean. Similar ocean depth-age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts
    corecore