35 research outputs found

    Long-term trends in the burden of colorectal cancer in Europe over three decades: a joinpoint regression and age-period-cohort analysis

    Get PDF
    BackgroundThe burden of colorectal cancer (CRC) in Europe is at a high level, but the epidemiological features have not yet been systematically studied. This study aimed to provide a timely and reliable assessment of the burden and trends of CRC in Europe to provide a scientific basis for its prevention and treatment.MethodsWe analyzed data on CRC in 44 European countries between 1990 and 2019 from the Global Burden of Disease study (GBD) 2019. In addition, the joinpoint regression model was applied to reflect temporal trends. The age-period-cohort model was constructed to explore age, period, and birth cohort effects that influence the risk of morbidity and mortality.ResultsIn Europe, new cases, disability-adjusted life years (DALYs) and deaths of CRC rose by 70.01%, 22.88% and 38.04% from 1990 to 2019, respectively. The age-standardized incidence rate (ASIR) has increased, while age-standardized DALY rate and age-standardized mortality rate (ASMR) have declined. We found that men experienced a significantly higher CRC burden than women. Age-period-cohort analysis showed that the risk of incidence and mortality increased with age and time; and it was lower in the later-born cohort than the earlier-born cohort.ConclusionASIR for CRC in Europe generally trended upwards from 1990 to 2019, stabilizing in recent years but still at a high level. CRC burden varied considerably in different countries. There was a pronounced gender difference in CRC burden, and middle-aged and older men should be a priority population for CRC prevention and treatment

    IP3R-dependent mitochondrial dysfunction mediates C5b-9-induced ferroptosis in trichloroethylene-caused immune kidney injury

    Get PDF
    Patients with occupational medicamentose-like dermatitis due to trichloroethylene often suffer from immune kidney injury. Our previous study reveals that C5b-9-dependent cytosolic Ca2+ overload-induced ferroptosis is involved in trichloroethylene sensitized kidney injury. However, how C5b-9 causes cytosolic Ca2+ rise and the specific mechanism whereby overloaded Ca2+ induces ferroptosis remain unknown. The purpose of our study was to explore the role of IP3R-dependent mitochondrial dysfunction in C5b-9 mediated ferroptosis in trichloroethylene sensitized kidney. Our results showed that IP3R was activated, and mitochondrial membrane potential was decreased in the renal epithelial cells of trichloroethylene-sensitized mice, and these changes were antagonized by CD59, a C5b-9 inhibitory protein. Moreover, this phenomenon was reproduced in a C5b-9-attacked HK-2 cell model. Further investigation showed that RNA interference with IP3R not only alleviated C5b-9-induced cytosolic Ca2+ overload and mitochondrial membrane potential loss but also attenuated C5b-9-induced ferroptosis in HK-2 cells. Mechanistically, IP3R-dependent cytosolic Ca2+ overload activated the mitochondrial permeability transition pore, resulting in the loss of mitochondrial membrane potential and ferroptosis of HK-2 cells. Finally, cyclosporin A, a mitochondrial permeability transition pore inhibitor, not only ameliorated IP3R-dependent mitochondrial dysfunction but also blocked C5b-9-induced ferroptosis. Taken together, these results suggest that IP3R-dependent mitochondrial dysfunction plays an important role in trichloroethylene sensitized renal tubular ferroptosis

    Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction

    Get PDF
    The oxygen evolution reaction (OER) is the performance-limiting step in the process of water splitting. In situ electrochemical conditioning could induce surface reconstruction of various OER electrocatalysts, forming reactive sites dynamically but at the expense of fast cation leaching. Therefore, achieving simultaneous improvement in catalytic activity and stability remains a significant challenge. Herein, we used a scalable cation deficiency-driven exsolution approach to ex situ reconstruct a homogeneous-doped cobaltate precursor into an Ir/CoO/perovskite heterojunction (SCI-350), which served as an active and stable OER electrode. The SCI-350 catalyst exhibited a low overpotential of 240 mV at 10 mA cm-2 in 1 M KOH and superior durability in practical electrolysis for over 150 h. The outstanding activity is preliminarily attributed to the exponentially enlarged electrochemical surface area for charge accumulation, increasing from 3.3 to 175.5 mF cm-2. Moreover, density functional theory calculations combined with advanced spectroscopy and 18O isotope-labeling experiments evidenced the tripled oxygen exchange kinetics, strengthened metal-oxygen hybridization, and engaged lattice oxygen oxidation for O-O coupling on SCI-350. This work presents a promising and feasible strategy for constructing highly active oxide OER electrocatalysts without sacrificing durability

    Protective effect of taurohyodeoxycholic acid from Pulvis Fellis Suis on trinitrobenzene sulfonic acid induced ulcerative colitis in mice

    No full text
    Ulcerative colitis is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration and up-regulation of pro-inflammatory cytokines. The aim of this study is to evaluate the effect of taurohyodeoxycholic acid (THDCA) isolated from Pulvis Fellis Suis on acute ulcerative colitis model induced by trinitrobenzene sulfonic acid (TNBS) in mice. The efficacy of THDCA was studied by macroscopical and histological scoring systems as well as myeloperoxidase (MPO) activity. Serum levels, including tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed by enzyme-linked immunoassay. The expression of cyclooxygenase (COX)-2 in the colons was assessed by immunohistochemical analysis. Treatment with THDCA in doses of 25, 50 and 100 mg/kg/day and sulfasalazine in a dose of 500 mg/kg/day used as reference for 7 consecutive days after the induction of colitis, significantly decreased colonic MPO activity, TNF-α, IL-6 serum levels and the expression of COX-2 in colon compared with TNBS induced ulcerative colitis model group. Moreover, THDCA attenuated the macroscopic colonic damage and the histopathological changes induced by TNBS. All the effects of these parameters were comparable to that of the standard sulfasalazine, especially at the highest dose level. The results suggested that THDCA from Pulvis Fellis Suis has a protective effect in TNBS-induced ulcerative colitis which might be due to its anti-inflammatory activities, and that it may have therapeutic value in the setting of inflammatory bowel disease

    Anti-inflammatory effects of Pulvis Fellis Suis extract in mice with ulcerative colitis

    No full text
    Ethnopharmacological relevance: Pulvis Fellis Suis is used in folk medicines to treat intestinal diseases, acute pharyngitis, whooping cough and asthma in China. Although several reports indicate that Pulvis Fellis Suis display diverse biological activities, such as antibacterial, anti-inflammatory and anti-infusorian effects, its effects on ulcerative colitis have not been previously explored. Aim of the study: The purpose of the present study is to assess the anti-inflammatory effect of Pulvis Fellis Suis (PFS) extract in acute ulcerative colitis model induced by trinitrobenzene sulfonic acid (TNBS) in mice. Materials and methods: Different doses of Pulvis Fellis Suis extract (100, 200 and 400 mg/kg/day) and sulfasalazine (500 mg/kg/day) were administered by gavage for 7 days after the induction of colitis with TNBS. The efficacy of PFS was studied by macroscopical and histological scoring systems as well as myeloperoxidase (MPO) activity. Serum levels, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were assayed by enzyme-linked immunoassay. The expression of cyclooxygenase (COX)-2 in the colons was assessed by immunohistochemical analysis. Results: Treatment with PFS significantly attenuated macroscopic damage as compared with TNBS (P < 0.01). Histological analysis showed that PFS improved the microscopic structure and preserved some areas of the colonic mucosa structure. In addition, administration of PFS effectively inhibited COX-2 protein expression and MPO activity accumulation. TNF-α and IL-6 levels were also diminished dose-dependently (P < 0.05, P < 0.01), and IL-6 level obtained had no significant results by small dose of PFS. All the effects of these parameters were comparable to that of the standard sulfasalazine, especially at the highest dose level. Conclusions: We have shown for the first time that PFS has an anti-inflammatory effect in TNBS-induced ulcerative colitis which might be related to the reduction of up-regulated TNF-α and IL-6 production, and that it may have therapeutic value in the setting of inflammatory bowel disease (IBD)

    Preparation of main iridoid glycosides in Fructus Corni by macroporous resin column chromatography and countercurrent chromatography

    No full text
    Loganin, sweroside, and morroniside, three main iridoid glycosides from Fructus Corni were successfully separated by macroporous resin column chromatography and countercurrent chromatography (CCC). In the first step, D101 macroporous resin was selected for cleaning-up, water was used to elute the column to remove the undesired constituents and then 50% aqueous ethanol was used to elute the targets. The total content of three iridoid glycosides was 51.1% in this process. In the second step, the obtained crude sample was then isolated by CCC using a two-phase solvent system composed of dichloromethane-methanol-n-butanol-water-acetic acid (5:5:2:4:0.1, v/v/v/v/v). From 100 mg of a crude sample, 12.6 mg of loganin, 5.9 mg of sweroside, and 28.5 mg of morroniside were obtained with purities of 98.6%, 97.3%, and 99.1% and total recoveries of 90.4%, 91.8%, and 89.1%, respectively, after a two-step purification. The HPLC quantitative analysis and response surface methodology were used for optimization of the separation condition and the target compounds were identified by ESI-MS, 1H NMR, and 13C NMR

    Finite Element Analysis of Lightning Damage Factors Based on Carbon Fiber Reinforced Polymer

    No full text
    While carbon-fiber-reinforced polymers (CFRPs) are widely used in the aerospace industry, they are not able to disperse current from lightning strikes because their conductivity is relatively low compared to metallic materials. As such, the undispersed current can cause the vaporization or delamination of the composites, threatening aircraft safety. In this paper, finite element models of lightning damage to CFRPs were established using commercial finite element analysis software, Abaqus, with the user-defined subroutines USDFLD and HEAVEL. The influences of factors such as the structural geometry, laminate sequence, and intrinsic properties of CFRPs on the degree of damage to the composites are further discussed. The results showed that when a current from lightning is applied to the CFRP surface, it mainly disperses along the fiber direction in the outermost layer. As the length of the CFRP increases, the injected current has a longer residence time in the material due to the increased current exporting distance. Consequently, larger amounts of current accumulate on the surface, eventually leading to more severe damage to the CFRP. This damage can be alleviated by increasing the thickness of the CFRP, as the greater overall resistance makes the CFRP a better insulator against the imposed current. This study also found that the damaged area increased as the angle between the first two layers increased, whereas the depth of the damage decreased due to the current dispersion between the first two layers. The analysis of the electrical conductivity of the composite suggested that damage in the fiber direction will be markedly reduced if the conductivity in the vertical fiber direction increases approximately up to the conductivity of the fiber direction. Moreover, increasing the thermal conductivity along the fiber direction will accelerate the heat dissipation process after the lightning strike, but the influence of the improved thermal conductivity on the extent of the lightning damage is less significant than that of the electrical conductivity

    Negative Density Restricts the Coexistence and Spatial Distribution of Dominant Species in Subtropical Evergreen Broad-Leaved Forests in China

    No full text
    Negative densification affects the spatial distribution of species in secondary evergreen broad-leaved forests and is a key mechanism governing species coexistence. We investigated the effects of habitat heterogeneity and density on the spatial distribution of populations of dominant woody species in a secondary evergreen broad-leaved forest in Wuchaoshan using spatial univariate point pattern analyses. This 6 ha forest dynamic monitoring sample area in Hangzhou, China is a typical secondary subtropical evergreen broad-leaved forest. We found (1) a strong effect of habitat heterogeneity that led to the spatial aggregation of dominant species in the plot. Habitat heterogeneity had a strong impact on mature individuals at different life history stages and of different species on a large scale. (2) Negative density dependence (NDD) generally affected spatial distributions of most dominant species and decreased in magnitude with age class. Therefore, different species of subtropical evergreen broad-leaved forests in China have formed unique spatial structures due to their habitat preferences but are generally subjected to density-dependent effects

    Screening of Hub Genes Associated with Pulmonary Arterial Hypertension by Integrated Bioinformatic Analysis

    No full text
    Background. Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment methods. Methods. In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition, the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for the 5 identified hub genes were screened out. Results. 69 DEGs were identified between PAH samples and normal samples. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7 TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17 drugs interacted with 5 hub genes were identified. Conclusions. Through bioinformatic analysis of microarray data sets, 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples. Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH

    Exploring the cortical habituation in migraine patients based on contingent negative variation

    No full text
    IntroductionCognitive dysfunction has frequently been found in patients with migraine. The so-called contingent negative variation (CNV) and EEG power spectral densities may be the best choices to explore the underlining pathophysiology, such as cortical inhibition and habituation.MethodsThirty migraine patients without aura and healthy controls matched for sex, age, and education were recruited separately for CNV recording. The amplitudes, latencies, and squares of different CNV components, such as oCNV, iCNV, tCNV, and PINV, were selected and analyzed. Behavioral data, such as manual reaction time (RT), were analyzed. We used the Person correlation coefficient R to analyze different ERP components in relation to clinical characteristics. A multiple regression analysis was conducted for the migraine group. Spectral analysis of EEG data from all channels using the fast Fourier transform (FFT).ResultsThe migraine group had longer A-latency, C-latency, and iCNV-latency than the control group. The migraine group had higher iCNV-amplitude, oCNV-amplitude, and tCNV-amplitude than the control group, especially those located in the occipital area. The iCNV-square, oCNV-square, tCNV-square, or PINV-square in the migraine group was significantly larger than the control group. Different correlations were found between clinical characteristics and ERP components. The delta or theta activity in the migraine group was statistically lower than in the control group.DiscussionOur study has revealed that migraine attacks may influence responsivity, pre-activation, habituation, and cortical inhibition not only on the behavioral level but also on the electrophysiological level. Abnormal changes in cortical habituation and inhibition can be interpreted as CNV components. Additionally, analyses have revealed correlations between CNV components and various factors, including age, the clinical course of the condition, attack frequency, pain intensity, and duration. Thus, repetitive migraine attacks can lead to a reduction in cortical inhibition and subsequent impairment in executive function
    corecore