18 research outputs found

    The impact of a discrepancy between actual and preferred living arrangements on life satisfaction among the elderly in China

    Get PDF
    OBJECTIVES:To explore the effects of a discrepancy between actual and preferred living arrangements on the relationship between living arrangements and life satisfaction among the elderly in China.METHODS:Secondary analysis of the 2005 dataset of the Chinese Longitudinal Healthy Longevity Survey was performed. A binary logistic regression model was used to analyze the relationship between life satisfaction and living arrangements.RESULTS:Among those with concordant actual and preferred living arrangements, living in a nursing home increased the likelihood of life satisfaction, whereas living alone and living with a spouse decreased the likelihood of life satisfaction compared to living with the next generation and a spouse. Among those with discordant living arrangements, there were no differences in life satisfaction between the various living arrangements, except that living with a spouse increased life satisfaction compared to living with the next generation and a spouse.CONCLUSIONS:A discrepancy between actual and preferred living arrangements modifies the relationship between life satisfaction and actual living arrangement. Living in a nursing home is a good option for Chinese elder care only if the older individual emotionally accepts it. Living alone or with a spouse is not a good arrangement for elder care, even though it is often preferred by the elderly. Those with discordant living arrangements are more satisfied living with their spouses

    Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice (Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing

    Get PDF
    Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Ting’s rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 × 10-7) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection

    Genome Sequencing of the Sweetpotato Whitefly \u3cem\u3eBemisia tabaci\u3c/em\u3e MED/Q

    Get PDF
    The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future \u27pan-genomic\u27 comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management

    The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species

    Get PDF
    Genomic information is essential for taxonomic, phylogenetic and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microbes. Hence, the GCM aims to promote research by deep-mining genomic data.This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA19050301), the Bureau of International Cooperation of the Chinese Academy of Sciences (grants 153211KYSB20160029 and 153211KYSB20150010), the National Key Research Program of China (grants 2017YFC1201202, 2016YFC1201303, and 2016YFC0901702), the 13th Five-year Informatization Plan of the Chinese Academy of Sciences (grant XXH13506), and the National Science Foundation for Young Scientists of China (grant 31701157).info:eu-repo/semantics/publishedVersio

    Genome Sequence of the Fungus Trichoderma asperellum SM-12F1 Revealing Candidate Functions of Growth Promotion, Biocontrol, and Bioremediation

    No full text
    Trichoderma spp. are versatile probiotic fungi that are known to promote plant growth and disease resistance under biotic stress, abiotic stress, or both. They are often used to prevent plant diseases caused by pathogens, act as biofertilizers, and are used in mycoremediation. In our previous study, Trichoderma asperellum strain SM-12F1 was isolated from soils contaminated with arsenic (As), adjacent to a realgar mine. SM-12F1 promoted plant growth and was useful for biocontrol and bioremediation. However, the genomic sequence of this strain was not characterized. This study aimed to generate high-quality genome resources for T. asperellum SM-12F1, and to determine the genomic basis of mechanisms behind plant growth promotion, biocontrol, and bioremediation of As in soil. Genome data of this fungus will provide perspectives on the molecular basis underlying biocontrol activity and mycoremediation.[Graphic: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    Association between 24-Hour Movement Behaviors and Smartphone Addiction among Adolescents in Foshan City, Southern China: Compositional Data Analysis

    No full text
    Smartphone addiction has become a public health issue. To help reduce smartphone addiction, we assessed the combined effect of 24-Hour Movement Behaviors on smartphone addiction during Corona Virus Disease 2019 (COVID-19) home confinement in Foshan, China. Data were collected in a sample of 1323 senior middle school students ((mean age ± standard deviation): 16.4 ± 0.9 years; 43.46% males) during the COVID-19 lockdown. Their 24-Hour movement behaviors were assessed by a self-reported questionnaire, The Smartphone Addiction Scale-Short Version (SAS-SV). The compositional multiple linear regression model and compositional isotemporal substitution model were used to examine the association between the time budget composition of the day and smartphone addiction. Smartphone addiction occurred in 671 (50.72%) of the 1323 students. Compared with smartphone-addicted adolescents, non-smartphone-addicted adolescents had more moderate-to-vigorous physical activity (MVPA) and sleep duration (SLP), and less sedentary behavior (SB). The distribution of time spent in 24-Hour movement behaviors was significantly associated with smartphone addiction. The negative effect was found for the proportion of time spent in MVPA or SLP (ilr1-MVPA = −0.453, p < 0.001. ilr1-SLP = −3.641, p < 0.001, respectively) relative to the other three behaviors. Conversely, SB was positively associated with the score of smartphone addiction (ilr1-SB = 2.641, p < 0.001). Reallocating one behavior to remaining behaviors was associated with smartphone addiction. Noticeably, the effects of one behavior replacing another behavior and of one behavior being displaced by another behavior were asymmetric. The 24-Hour movement behaviors of adolescents are closely related to smartphone addiction, and future intervention studies should focus on the compositional attribute of 24-Hour movement behaviors

    In-situ chemical polymerization of Cu-Polythiophenes composite film as seed layer for direct electroplating on insulating substrate

    No full text
    Metal particles are embedded in the polymer to form a polymer composite film as a seed layer on an insulating substrate to overcome the limitation that electrodeposited copper only occurring at the interface between the polymer and the metal electrode. In this work, we successfully developed a Cu-polythiophenes composite film (Cu-PT composite film) through a facile in-situ reduction method, obtaining porous-networked PT containing homogeneously distributed Cu. the Cu-PT composite film serve as a feasible seed layer for subsequent metallization on the insulating substrate. The deposition conditions for the optimized migration rate of copper during the electroplating process of the composite film were obtained by multiple groups of single factor experiments. Notably, electroplated textile fabrics with the Cu-PT composite film demonstrate a wide stretch-resistant working range (0–50% applied strain) maintaining stable conductivity

    Table_1_Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice (Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing.doc

    No full text
    <p>Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Ting’s rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 × 10<sup>-7</sup>) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection.</p

    Table_2_Genome-Wide Association Mapping for Cold Tolerance in a Core Collection of Rice (Oryza sativa L.) Landraces by Using High-Density Single Nucleotide Polymorphism Markers From Specific-Locus Amplified Fragment Sequencing.docx

    No full text
    <p>Understanding the genetic mechanism of cold tolerance in rice is important to mine elite genes from rice landraces and breed excellent cultivars for this trait. In this study, a genome-wide association study (GWAS) was performed using high-density single nucleotide polymorphisms (SNPs) obtained using specific-locus amplified fragment sequencing (SLAF-seq) technology from a core collection of landraces of rice. A total of 67,511 SNPs obtained from 116,643 SLAF tags were used for genotyping the 150 accessions of rice landraces in the Ting’s rice core collection. A compressed mixed liner model was used to perform GWAS by using the high-density SNPs for cold tolerance in rice landraces at the seedling stage. A total of 26 SNPs were found to be significantly (P < 1.48 × 10<sup>-7</sup>) associated with cold tolerance, which could explained phenotypic variations ranging from 26 to 33%. Among them, two quantitative trait loci (QTLs) were mapped closely to the previously cloned/mapped genes or QTLs for cold tolerance. A newly identified QTL for cold tolerance in rice was further characterized by sequencing, real time-polymerase chain reaction, and bioinformatics analyses. One candidate gene, i.e., Os01g0620100, showed different gene expression levels between the cold tolerant and sensitive landraces under cold stress. We found the difference of coding amino acid in Os01g0620100 between cold tolerant and sensitive landraces caused by polymorphism within the coding domain sequence. In addition, the prediction of Os01g0620100 protein revealed a WD40 domain that was frequently found in cold tolerant landraces. Therefore, we speculated that Os01g0620100 was highly important for the response to cold stress in rice. These results indicated that rice landraces are important sources for investigating rice cold tolerance, and the mapping results might provide important information to breed cold-tolerant rice cultivars by using marker-assisted selection.</p
    corecore