35 research outputs found

    Involuntary Thumb Flexion on Neurological Examination: An Unusual Form of Upper Limb Dystonia in the Faroe Islands

    Get PDF
    Background: The prevalence of dystonia varies worldwide. A prior report suggested a high prevalence of focal dystonia in the Faroese population, possibly reflecting a founder effect. During standardized neurological examination as part of an ongoing neuroepidemiologic study in the Faroe Islands, we noted an unusual phenomenon of thumb flexion during repetitive hand movements in a subset of subjects and sought to define its phenomenology. Methods: We requested commentary from a panel of dystonia experts regarding the phenomenology of the movements. These experts reviewed the videotaped neurological examination. Results: Among the experts, dystonia was the leading diagnosis. Alternate causes were considered, but deemed less likely. Discussion: Diagnosis of dystonia requires careful clinical assessment and consideration of associated features. We report a novel form of dystonia, not previously described to our knowledge, in this isolated population. Further studies of dystonia prevalence in the Faroe Islands are merited to characterize its burden in this population and its specific clinical characteristics. Keywords: Dystonia, focal dystonia, Faroe Islands, thumb flexion, phenomenolog

    Validation of a guideline to reduce variability in diagnosing cervical dystonia

    Get PDF
    Background: Cervical dystonia is characterized by a variable pattern of neck muscle involvement. Due to the lack of a diagnostic test, cervical dystonia diagnosis is based on clinical examination and is therefore subjective. The present work was designed to provide practical guidance for clinicians in confirming or refuting suspected cervical dystonia. Methods: Participants were video recorded according to a standardized protocol to assess 6 main clinical features possibly contributing to cervical dystonia diagnosis: presence of repetitive, patterned head/neck movements/postures inducing head/neck deviation from neutral position (item 1); sensory trick (item 2); and red flags related to conditions mimicking dystonia that should be absent in dystonia (items 3-6). Inter-/intra-rater agreement among three independent raters was assessed by k statistics. To estimate sensitivity and specificity, the gold standard was cervical dystonia diagnosis reviewed at each site by independent senior neurologists. Results: The validation sample included 43 idiopathic cervical dystonia patients and 41 control subjects (12 normal subjects, 6 patients with isolated head tremor, 4 with chorea, 6 with tics, 4 with head ptosis due to myasthenia or amyotrophic lateral sclerosis, 7 with orthopedic/rheumatologic neck diseases, and 2 with ocular torticollis). The best combination of sensitivity and specificity was observed considering all the items except for an item related to capability to voluntarily suppress spasms (sensitivity: 96.1%; specificity: 81%). Conclusions: An accurate diagnosis of cervical dystonia can be achieved if, in addition to the core motor features, we also consider some clinical features related to dystonia mimics that should be absent in dystonia

    The Pain in Dystonia Scale (PIDS)—Development and Validation in Cervical Dystonia

    Get PDF
    BACKGROUND: A better understanding of pain in adult-onset idiopathic dystonia (AOID) is needed to implement effective therapeutic strategies. OBJECTIVE: To develop a new rating instrument for pain in AOID and validate it in cervical dystonia (CD). METHODS: Development and validation of the Pain in Dystonia Scale (PIDS) comprised three phases. In phase 1, international experts and participants with AOID generated and evaluated the preliminary items for content validity. In phase 2, the PIDS was drafted and revised by the experts, followed by cognitive interviews to ensure self-administration suitability. In phase 3, the PIDS psychometric properties were assessed in 85 participants with CD and retested in 40 participants. RESULTS: The final version of PIDS evaluates pain severity (by body-part), functional impact, and external modulating factors. Test-retest reliability showed a high-correlation coefficient for the total score (0.9, P < 0.001), and intraclass correlation coefficients were 0.7 or higher for all items in all body-parts subscores. The overall PIDS severity score showed high internal consistency (Cronbach's α, 0.9). Convergent validity analysis revealed a strong correlation between the PIDS severity score and the Toronto Western Spasmodic Torticollis Rating Scale pain subscale (0.8, P < 0.001) and the Brief Pain Inventory-short form items related to pain at time of the assessment (0.7, P < 0.001) and impact of pain on daily functioning (0.7, P < 0.001). CONCLUSION: The PIDS is the first specific questionnaire developed to evaluate pain in all patients with AOID, here, demonstrating high-level psychometric properties in people with CD. Future work will validate PIDS in other forms of AOID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Postural directionality and head tremor in cervical dystonia

    Get PDF
    Background: Although abnormal head and neck postures are defining features of cervical dystonia (CD), head tremor (HT) is also common. However, little is known about the relationship between abnormal postures and HT in CD. Methods: We analyzed clinical data and video recordings from 185 patients enrolled by the Dystonia Coalition. We calculated the likelihood of their HT and HT type ( regular vs. jerky ) given directionality of abnormal head postures, disease duration, sex, and age. Results: Patients with retrocollis were more likely to have HT than patients with anterocollis (X Discussion: We found that HT is more likely for CD patients with a specific directionality in their predominant posture. Our finding that CD patients with longer disease duration have a higher likelihood of HT also raises the question of whether HT becomes more likely over time in individual patients

    Isolated Cervical Dystonia:Diagnosis and Classification

    Get PDF
    This document presents a consensus on the diagnosis and classification of isolated cervical dystonia (iCD) with a review of proposed terminology. The International Parkinson and Movement Disorder Society Dystonia Study Group convened a panel of experts to review the main clinical and diagnostic issues related to iCD and to arrive at a consensus on diagnostic criteria and classification. These criteria are intended for use in clinical research, but also may be used to guide clinical practice. The benchmark is expert clinical observation and evaluation. The criteria aim to systematize the use of terminology as well as the diagnostic process, to make it reproducible across centers and applicable by expert and non-expert clinicians. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations, which are incorporated into the current criteria. Three iCD presentations are described in some detail: idiopathic (focal or segmental) iCD, genetic iCD, and acquired iCD. The relationship between iCD and isolated head tremor is also reviewed. Recognition of idiopathic iCD has two levels of certainty, definite or probable, supported by specific diagnostic criteria. Although a probable diagnosis is appropriate for clinical practice, a higher diagnostic level may be required for specific research studies. The consensus retains elements proven valuable in previous criteria and omits aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of iCD expands, these criteria will need continuous revision to accommodate new advances.</p

    Isolated Cervical Dystonia: Diagnosis and Classification

    Get PDF
    This document presents a consensus on the diagnosis and classification of isolated cervical dystonia (iCD) with a review of proposed terminology. The International Parkinson and Movement Disorder Society Dystonia Study Group convened a panel of experts to review the main clinical and diagnostic issues related to iCD and to arrive at a consensus on diagnostic criteria and classification. These criteria are intended for use in clinical research, but also may be used to guide clinical practice. The benchmark is expert clinical observation and evaluation. The criteria aim to systematize the use of terminology as well as the diagnostic process, to make it reproducible across centers and applicable by expert and non-expert clinicians. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations, which are incorporated into the current criteria. Three iCD presentations are described in some detail: idiopathic (focal or segmental) iCD, genetic iCD, and acquired iCD. The relationship between iCD and isolated head tremor is also reviewed. Recognition of idiopathic iCD has two levels of certainty, definite or probable, supported by specific diagnostic criteria. Although a probable diagnosis is appropriate for clinical practice, a higher diagnostic level may be required for specific research studies. The consensus retains elements proven valuable in previous criteria and omits aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of iCD expands, these criteria will need continuous revision to accommodate new advances. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    A rare sequence variant in intron 1 of THAP1 is associated with primary dystonia

    Get PDF
    Although coding variants in THAP1 have been causally associated with primary dystonia, the contribution of noncoding variants remains uncertain. Herein, we examine a previously identified Intron 1 variant (c.71+9C>A, rs200209986). Among 1672 subjects with mainly adult-onset primary dystonia, 12 harbored the variant in contrast to 1/1574 controls (P < 0.01). Dystonia classification included cervical dystonia (N = 3), laryngeal dystonia (adductor subtype, N = 3), jaw-opening oromandibular dystonia (N = 1), blepharospasm (N = 2), and unclassified (N = 3). Age of dystonia onset ranged from 25 to 69 years (mean = 54 years). In comparison to controls with no identified THAP1 sequence variants, the c.71+9C>A variant was associated with an elevated ratio of Isoform 1 (NM_018105) to Isoform 2 (NM_199003) in leukocytes. In silico and minigene analyses indicated that c.71+9C>A alters THAP1 splicing. Lymphoblastoid cells harboring the c.71+9C>A variant showed extensive apoptosis with relatively fewer cells in the G2 phase of the cell cycle. Differentially expressed genes from lymphoblastoid cells revealed that the c.71+9C>A variant exerts effects on DNA synthesis, cell growth and proliferation, cell survival, and cytotoxicity. In aggregate, these data indicate that THAP1 c.71+9C>A is a risk factor for adult-onset primary dystonia

    Non-motor phenotypic subgroups in adult-onset idiopathic, isolated, focal cervical dystonia

    Get PDF
    Background: Non-motor symptoms are well established phenotypic components of adult-onset idiopathic, isolated, focal cervical dystonia (AOIFCD). However, improved understanding of their clinical heterogeneity is needed to better target therapeutic intervention. Here, we examine non-motor phenotypic features to identify possible AOIFCD subgroups. Methods: Participants diagnosed with AOIFCD were recruited via specialist neurology clinics (dystonia wales: n = 114, dystonia coalition: n = 183). Non-motor assessment included psychiatric symptoms, pain, sleep disturbance, and quality of life, assessed using self-completed questionnaires or face-to-face assessment. Both cohorts were analyzed independently using Cluster, and Bayesian multiple mixed model phenotype analyses to investigate the relationship between non-motor symptoms and determine evidence of phenotypic subgroups. Results: Independent cluster analysis of the two cohorts suggests two predominant phenotypic subgroups, one consisting of approximately a third of participants in both cohorts, experiencing increased levels of depression, anxiety, sleep impairment, and pain catastrophizing, as well as, decreased quality of life. The Bayesian approach reinforced this with the primary axis, which explained the majority of the variance, in each cohort being associated with psychiatric symptomology, and also sleep impairment and pain catastrophizing in the Dystonia Wales cohort. Conclusions: Non-motor symptoms accompanying AOIFCD parse into two predominant phenotypic sub-groups, with differences in psychiatric symptoms, pain catastrophizing, sleep quality, and quality of life. Improved understanding of these symptom groups will enable better targeted pathophysiological investigation and future therapeutic intervention

    The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes

    No full text
    Purpose of review We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. Recent findings The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches

    Study of the adenosinergic system in the brain of HPRT knockout mouse (Lesch-Nyhan disease).

    No full text
    BACKGROUND: Lesch-Nyhan disease (LND), an X-linked genetic disease caused by complete deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT), is characterized by hyperuricemia and psychiatric disturbance, mainly self-aggressiveness. Literature dates support the hypothesis that dopaminergic deficit and serotonergic excess in the circuit of basal ganglia are responsible for the aggressive behavior. Altered adenosine transport across the membrane of HPRT-deficient lymphocytes has been reported, suggesting adenosine involvement in LND. METHODS: The expression of several genes related to the adenosinergic system (ADORA1A, ADORA2A, ADORA2B) were studied in the brain of the murine model of LND by real time PCR. Nucleotide levels and enzyme activities possibly involved in adenosine release were also measured. RESULTS: Studies performed by real time PCR showed 95% increase in ADORA1A expression, 15% decrease in ADORA2A expression, and no change in ADORA2B expression in knockout mice compared to controls. No significant differences were found in the level of nucleotides or enzyme activities between control and mutant mice. CONCLUSIONS: Our results suggest that adenosine neurotransmission might be involved in the specific neurobehavioral features of LND by increased expression of adenosine A1 receptors.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore